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Abstract. Autonomous learning is the ability to learn without exter- concept of pruning [26, 8], the associated subnetworks became
nal teachers. Whatanan agent learn autonomously? To answer thisviable, i.e. networks with no contributing neurons. The phenomenon
guestion we propose a hierarchical exhaustive combinatorial cornin which an over-sized neuronal network is first initialized, followed
structive algorithm. It generates subnetworks that attempt to learby elimination of non-active elements is prevalent in the brain and is
all possible correlations between subsets of available raw data fromalled exuberance [13].
the agent’s sensors and motors. Using the concept of pruning, sub- Hierarchy is achieved by augmenting a higher level's available
networks that are presented with uncorrelated data sets are removetsta by lower levels’ viable networks. Thus, a new level exhaus-
resulting in a small pool ofiable subnetworks. These augment the tively constructs subnetworks that attempt to learn correlations be-
raw information dataset in higher levels, in which the exhaustive contween outputs of lower levels’ networks and raw sensory-motor data.
struction and pruning are repeated. The end result of the hierarchExuberance and pruning follows in order to distill the viable and reli-
cal process is a pool of viable and reliable subnetworks that repreable subnetworks of this level in the hierarchy. The process continues
sentall the correlations the agent can autonomously learn. One cafor higher hierarchical levels.
then construct full networks by wiring learned subnetworks in or- The end result of the hierarchical construction is a pool of subnet-
der to perform specific tasks. The algorithm is implemented on awvorks that representd| the correlations the agent can autonomously
robot with a moving camera and an arm, highlighting novel con-learn. This pool can then be wired in such a way so as to perform
cepts regarding active sensing and autonomous learning. We shaspecific tasks. Since the agent cannot learn any other correlation, the
that the robot’s autonomously learned viable and reliable subneteombination of all possible wiring of the subnetwork pool represents
works are its sensory-motor internal models, motion detection, vithe entire repertoire of tasks the agent can perform. Furthermore,
sual self-recognition and camera to arm coordinate transformatiorsince all the elements are autonomously learned, concurrent execu-
The robot’s only non-trivial closed-loop execution network is showntion and learning can be performed, overcoming calibration and de-
to perform reaching movements towards a moving object and is roterioration errors on-line.
bust to noise and changes in the robot’s sensors and motors due to itsWe demonstrate the process on a real robot, with a 1 degree-of-
concurrent execution and re-learning capabilities. freedom arm and a camera mounted on a single motor, representing
the eye. We show that the viable subnetworks of the first level of the
hierarchy represent only the internal models (IM) [14, 21, 29] of the
1 Introduction sensory-motor coupling, among which visual motion-detection is a
notable example. The second level uses the first level’'s subnetworks
One of the brain’s greatest virtues is its ability to learn. However, ongo learn more complex correlations, such as visual self-recognition
can distinguish between two learning categories, namely, externaj2o, 5, 17]. The third and final level encompasses the entire visual
or teacher-mediated learning and autonomous learning, i.e. leamirfge|d and autonomously learns visual-arm coordinate transformation
from internally accessible information. While naming of objects and[22]. The viable and reliable subnetworks are then wired to achieve
colors is externally taught, e.g. one must be told that the word “yelthe only functional closed-loop circuit, given the learning schedule,
low” is associated to a specific color perception, controlling your ownj e. the only circuit that performs non-trivial action. The circuit per-
body movements is autonomously learned [20, 5]. However, learningorms a reaching task, with concurrent autonomous learning of the
reaching movements are not so easy to classify [30, 2]. composing elements.

In this contribution we address the question: whah be au- The novel features of this paper are: (i) a comprehensive brain-
tonomously learned, without external teachers? We wish to modghspired framework of hierarchical autonomous learning of sersory
our view of the brain’s solution to this question. For this reasonmotor correlations; (i) connection between autonomous and active
we construct a hierarchical neural network that attempts to ausensing paradigms; (iii) a single learning algorithm that generates
tonomously learrall correlations between available data, given anmgtion detection, self-recognition and hand-eye coordinate transfor-
agent's sensors, motors and performed actionsalBywe mean an  mation; (i) demonstration of a fully autonomous learning reaching
exhaustive combinatorial construction of subnetworks, representingghot.
all pOSSib'e subsets of available data, wherein each subnettork The paper is Organized as follows. We begin with a brief descrip-
temptsto learn a specific data subset's correlation. Many such subtion of the model architecture and framework in Sec. 2. We then
sets hold no correlations and are thus unlearnable; by employing thgresent in Sec. 3 the mathematical notations of the agent, data sets
and subnetworks, followed by a description of the learning and prun-
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torial construction of all the subnetworks, followed by an analysis ofreliable, i.e. its prediction error even on the training set is high, thus
the growing complexity of the network and possible execution tasksexhibiting another form of inability to learn.
Both sections are accompanied by a running example (Fig. 4), whose Following the brain’s hierarchical structure, our proposed archi-
details are given in Sec. 5. Related works are decsribed in Sec.6 anelcture is hierarchical in the sense that higher level subnetworks learn
the discussion in Sec. 7 concludes the paper. correlations between lower levels’ subnetwork outputs and the raw
sensory-motor information. This is reminiscent of cascade correla-
. tion networks [7, 16, 31] in which each new hidden layer neuron is
2 Model Architecture and Framework connected to the input layer and lower-level hidden neurons. How-

. . ) . . _ever, in our construction, each correlation learned is a whole (learned
The main concept behind the proposed architecture, Fig. 1, is até

| . ¢ lati The imol nd viable) subnetwork that augments the input-space and allows
tonomous_ earning o sensor_y-motor corre ations. ne imp em_ente arning of new correlations.
algorithm isinternally supervisedearning, i.e. supervised learning

h “abeled” traini i ided by th tself. This | More specifically, in the algorithm’s first level of the hierarchy,
where a "labeled” training set is provided by the agent itself. This ISonly raw unprocessedata from the sensors and motors are used in

not a form of unsupervised leaming [34, 25], but rather learning Yhe aforementioned process, which ends with a small number of vi-
predict correlations between subsets of available information. Thi§jlble subnetworks, Fig. 1(a). In the next level of the hierarchy, the

information is the tl.me-serles of raw data from the sensors and mof)revious level's learned and viable subnetworks are combined with
tors of the agent, Fig. 1(a).

the sensory-motor data, Fig. 1(b). Another exhaustive combinatorial
construction of new subnetworks is performed, where now each sub-
c[[@Le"—e'l,,_g set must includet leastone learned subnetwork from the previous
" Jil O hierarchical level. Exuberance and pruning follows in order to distill
the viable and reliable subnetworks. The process continues for higher
hierarchical levels.
While hierarchical construction of unsupervised learning networks
have been used on pure sensory data, e.g. images [12, 25],reur co

(b) Level 2 struction focuses on internally supervised learning of correlations be-
Construction Pruning tween sensory flow and motor actions. Heramive sensing4, 28],

in which sensors are moved and controlled by the agent, is paramount
to the understanding of the learned correlations. These represent
what the agent can learn and predict about its own body and how
it senses the environment in an active fashion. Thus, the agent can

e QL learn to predict an actuator’s influence on its mounted sensor’s in-
oy oter formation flow, as well as learn to determine the appropriate motor
metor (YK command that will generate a specific sensory input. These are the

active sensing counterparts of the forward and inverse models, re-
spectively [14, 21, 29].

3 Agent and Subnetwork Notations

This section introduces the basic elements of the proposed model,

Figurel. Model architecture, where each subnetwork (numbered tircle namely, the agent, its sensory-motor data and the subnetworks. The

autonomously learns the correlation between two inputskdarows) and

one output (gray arrows). (a) Level 1 constructioratyfsubnetworkd. (1), subr]etvyorks’ Iearning and pruning processes are the_n descrilhaed._T
given camera sensor and a motor informatioft); followed by pruning section is accompanied by a running example of the implementation
that leaves only one subnetwork viablé(1). (b) Level 2 construction ddll of the process on a real robot (Fig. 2), to better elucidate the finer

subnetworkd(?) that include level 1 viable network; pruning leaves only ~ details of the model.
subnetworks 3 and 5 viabl#,(2).

3.1 Agent and Sensory-Motor Data

The architecture construction is exhaustive in the sense that correi.-he agent is composed &f,; motors andVs sensors. The former
M .

lations between all subsets of available information are learned. ngecutes motor commands’. i — 1 N and the latter re-
are interested in a brain-like architecture and thus employ a prevaler&teives sensory input’, j — t1 N;. 'ﬂ’]e g;taset time-series is

: . @omposed of copies of the motor commands, known as efference
rapid growth of connectivity between many neurons on many lev-

els, followed by deterioration of unused or non-correlated (:onnecgopiIes []-18’ ?]’ and sensory '“p”} W'}h possible dela&é?) 7-:
tions. In our implementation, each subnetwork is an artificial neural{mT%l’sTg’ T =t =1, t—dmi7s =6t =1, t —d3},
network, initialized with many hidden neurons, followed by prun- whered., is the maximal delay of théth motor command and’

ing [26, 8] of neurons whose decaying weights are smaller than & the maximal delay of thgth sensory input. Th¢l) superscript
given threshold. If no correlations are present, the pruning processenotes the first level of the hierarchy, which HIH@,EDH data ele-
will result in anon-viablesubnetwork, i.e. a network with no con- ments.

tributing neurons, thus exemplifying the network’s inability to learn  Example The example agent is a LEGO Mindstorm robot
the subset’s correlation. In some situations, usually for large-inputFig. 2(a)) with Ny, = 2 motors; the first controls an arm and the
subnetworks, pruning still results in a viable subnetwork, butiutis  second the camera. It haés = 3 sensors, where the first two are



rate3 and momentuna.

Pruning. Concurrent with the learning algorithm, we have im-
plemented a pruning algorithm [26, 8] via weight decay. An ad-
ditional penalty term was introduced to the ANN weights’ update
rule in the form of—~sign(w;;), where0 < ~ < 1 is the pruning
rate andw;; is the respective weight. Hence, the full update rule is
given by Aw;; = Bef'(z) + aw;; — vysign(w;;), wheree is the
(backpropagated-) error anf{z) is the neuron’s transfer function.
For each level we have chosento be proportional to the overall
learning time of all networks, i.e. while learning and pruning were
concurrent, as expressed in the update rule, effectively pruning man
ifested after learning (were possible) was stabilized.

At each time step, the sum of the absolute weights for each neuron
Figure2. (a,b) Two consecutive images as captured by canagra; ;. in the .hidden layers (both inpu.t and output weights) was compared
O marks the center of the arm, X marks the center of the movingbije {0 @ given thresholdinresnora; if the sum was below the thresh-

line shows the distance between the two. (c) Output of motaiaalion old, that neuron was pruned. If the last neuron of a hidden layer
subnetwork,V7“>. (d) Output of visual self-recognition subnetwoﬂg,@) was pruned, the subnetwork was deemed non-viable. Furthermore,
(see text for details). for subnetworks with only two input neurons (see below), the sums

of the absolute weights of the input neurons were calculated. If one
. . ) 1o . sum was more thaf,,1 times greater than the other, the subnetwork
proprioception sensors of the motofg,” := s, i.e. report the  \vas termed non-viable, since it depends only on a single input, and
motor angle, and the third is the camera,:= s3. The camera is not both. We denote the viable subnetworksiby_ L.
compose_d OBQ X _60 plxel_s, an_d we shall consider an increasing re- Example Since the robot's raw dataset hﬁ’g)gl)ﬂ — 8 ele-
ceptive field with increasing hierarchical levels, ranging from a sin- .« there are a total OfL()|| = 168 possible subnetworks

gle pixel in the first level, through patches of 7x7 pixels in the secondOne example of a viable subnetwork is the first motor's forward
level, up to the whole image in the third level of the hierarchy (see,

_ : i model [29]L = p(pi|pi_1,mi), i.e. the prediction of the next mo-
yE2 = . : ? ' .
below). We conS|de1r QS motor dela = 0and asmgle_tlme de __tor angle, given the previous angle and the given motor command.
lay for the sensorsi,"<° = 1. Thus the data set at each time step is

L = p(pi|pi_1,ct), on the other hand, is non-viable since there is
(1) _ 1.2 1 1 2 2 : W — . ? I .

Dy = {mi,mi, pi, pi_1, D¢, Pi—1, Ct, ce—1}, With || D, || = 8. no correlation between the first motor’s angle, the previous other mo-
tor's angle and the current image pixels.

3.2 Subnetworks, Learning and Pruning

4 Hierarchical Construction
Subnetworks. A subnetwork is a function approximator that at-

tempts to learn the correlation between elements of the data set. #Sing the general notations described above, we proceed to the ex-
is denoted byLi;x = p(D:|D;, D), Vi, j,k € D,i # j # k # i, haus_tlve combmatona_l construgtlon of the subnetyvorks in an hier-
where the subscript j, k are indexes of the data-set elements (differ- archical fashion. We first describe the augmentation of the dataset
ent from the subscript, which indicates the current time step of the Y previous level's viable networks and then produce the current
wholedata set). We have restricted the subnetworks2o-a 1 net- level's subnetwork pool. A complexity analysis follows, showing the
works, i.e. only mapping of two dataset elements to another, whergouble-exponential increase in network complexity, had exuberance
extensions to more elaborate mappings is straightforward. Henc&nd pruning were not implemented. The exact increase in complex-
there arg|L|| = ||D|| x (||D|| — 1) x (||D|| — 2)/2 possible sub- ?ty cannot be a-priori compgted since it_depends on the agent and
networks. The implementation of the subnetworks is via an artificialts €nvironment, but a drastic decrease in complexity results if one
neural network (ANN), with input neurons that receive the data ele-2SSumes proportional pruning. The viable and reliable subnetworks
mentsD;, Dy, several hidden layers and output neurons that encoddllow the wiring of specific circuits that can perform specific tasks.
D;. This is discussed at the end of the section.

Each subnetwork was taken to be multi-layered in order to allow

learning of complex sensory-motor correlations. A-priorithe cofrela 4,1 Dataset Augmentation and Subnetwork Pool

tion is not known, and hence initially a complex network is required ) ) ) ) )

for all subnetworks to allow generality. Furthermore, in this imple- 1he first hierarchical level dataset is composed strictly of raw

mentation there is a unique approximated output for every input eleS€NSory-motor data)"). Using these time-series as a training set,

ment, i.e. the function approximation is deterministic, eliminating the@ ool of subnetworks is composdd}, = p(D{"|D{", D{V),

need for probability normalization. It is also imperative, for proper Vi, j, k € D, i # j # k # i. However, not all subnetworks are

comparison, that the ANN structure and parameters be the same furable and following the process of concurrent learning and pruning,

all subnetworks. Thus, all dataset elements were normalized to b& subset of viable subnetworks is produ@é@ c LW,

D € [-1, 1] and saturated-linear transfer functions were used in the The second hierarchical level now has access to the first level's

output neurons. viable subnetworks processed information, i.e. presented with the
L earning. Motion of the agent’s motors produces the dataset time+taw sensory-motor dataset, the viable networks produce predictions

series, which is treated as the subnetworks’ training set. Autonomousased on their learned correlations. Hence, the augmented second

internally supervised on-line learning proceeds with the presentatiotevel dataset iD® = D® U V(). One can then proceed to ex-

of this dataset time-series &l the subnetworks, in parallel. We have haustively construct subnetworks that will attempt to learn all possi-

implemented a back-propagation learning algorithm, with learningole2 — 1 correlations of the augmented dataset. However, only sub-



networks that includat leastone of the previous level’s viable net- In order for a task to be operational, the last subnetwork must have

works will be constructed. The rest were already learned in the previa motor output. This drastically restricts the number of subnetworks

ous level. The second level's subnetwork pool is denoteﬂﬁﬁ%/ = that may reside in the end of the task network. However, the number

p(D(2>|D(.2),D,(f)), Vi, ik € D(Q),i £ j # k # i such that of possible erlqgs cann.ot be a-priori computed, since the number
J and characteristics of theable networks are not known.

(2) (1) ; ;
AD; ;j, € V*. The total number of such subnetworks is then given Example One of the first level's viable subnetwork is the arm’s

byHL(Q)H = [[DP[| x (I =1) x (ID®||=2)/2= [[LV]|. inverse modely ™ = p(m!|pt, p}_,). During autonomous learn-
Concurrent learning and pruning then follows to prodld’é@ viable ing, it was presented with the known time-series, where, was
netwc_nrks. _ _ _ the delayed proprioception input. However, during execution it can
This can be easily generalized to higher levels, as follows: serve as a mechanism to achieve a specific angle positign;
P _ pn=1 =D B V) = p(m}ii|peas, pi), 1-€. it determines the next motor com-
n) ) () () mandm;_, via the goal position and the current position. Hence, it
Lij = p(D; D7, D), may reside at the end of a functional network.
Vij ke D™ iz j#k#i s£3D"), e V"TNQ)
||L(n)” — HD(n)H > (HD(n)H _ 1) > 5 Robot Implementatlon

- We have implemented the proposed model on a LEGO Mindstorm
(D™ - 2)/2 - Z IIL™)| (3)  robot (Fig. 1(a), Supp. Movie), with a 1 degree-of-freedom (DOF)
= arm, m;, and a single motorm? that controls the pan of a USB
camera,ct As described above, the raw data set at each time step
D( = {mtvmtvptapt 1, D2, D1, Cty Coe 1} Wherept is the
roprioception information relating the motor angle. First, the hier-
rchical construction of the viable subnetwork pool is presented. It
is followed by a presentation of a possible wiring of the learned sub-
networks to accomplish a reaching task.

Example The robot's first level of the hierarchy produces .
IIL™M|| = 168 subnetworks. However, only internal models (IM) '
of the sensory-motor dataset have correlations (see below, Fig. 3
These are presented to three subnetworks that refatg_;, m;

(IM of the arm); three subnetworks that relatg p?_;, m? (IM of
the eye-motor) and; three subnetworks that relate; 1, m? (IM of
the eye-motor and camera). Heng&, (|| = 9 and||D®|| = 17,
resulting in||[L®|| = 1872. 5.1 Construction of Viable Subnetwork Pools

5.1.1 Firstlevel

The first level data sef)*, was used to construct an exhaustive set
One can consider the increase in the number of subnetworks as thgall ||L()|| = 168 possible subnetworks. All the subnetworks had
hierarchical levels grow. Assume that pruning is not implementediwo hidden layers with four neurons each, ahd= o = 0.1, v =

this results in changing Eq. (1) 0™ = D™~ U L"~Y. Thus,  0.0001. The robot moved its arm motor randomly, and its camera
denotingz,, := ||D™|| andy, := ||L™||, we get the following  motor in a succession of random motion and then no motion. This
recursion relations: was repeated for 100,000 time steps, in which concurrent learning
and pruning was performed on all subnetworks in parallel, Fig. 3.

4.2 Complexity Analysis

Tn = Tp—1 + Yn—1 (4)
Yn = xn(In - 1)(In - 2)/2 —Yn-1 Yo = 0 (5) o @) @)
VO o, Bt VO [pt, ) VO 19},

This results in double exponential dependency on the hierarchy level / l
! < I - N - -

n o~ O(z3).
However, one can counter this increase by the use of exuberanc Ot “, o) W ‘p ) Vo2, ‘p

-1 M

and pruning. Consider that only a very small subset of the subnet » ;

work pool remains viable, such thg¥(™|| = x||D™]|, & > 1. i

This results in a drastic decrease in subnetwork pool complexity, tc N N N

a single exponential dependenge:~ O (x>~ Y). — it — Girts — G irt
Furthermore, as seen in the example below, there is a possibility J Z} J I < I ]

that several of the viable networks aguivalenti.e. they convey the o e e S e

same information and are thus redundant. This may result in a linea Vigte 197 ) Vil P ©) Vi, . )

increase in the number of informative viable networks as hierarchical o o o -

level increases. This is indeed the case in the robot example analyze

below.
4.3 Execution of a Task Figure3. Mapping of viable subnetworks of the first level. In order to

' visualize the image-space, hefgeis taken to be the normazlized gray-scale
Once the hierarchical levels’ viable subnetworks were learned, one value of the RGB pixel |rV7(1)12

can construct a full network to perform specific tasks. This can be

done by connecting one subnetwork’s output to another’s input. No-

tice that during execution the inputs to the subnetworks may differ The first level of the hierarchy represents the lowest level in the vi-
from those during the learning phase. However, they must acconsual pathway, e.g. retina. Heneg jn this level was set to be a single
modate the inputs’ dimensionality and content. RGB pixel. During the learning process, a subnetwork that had either



¢t or c;—1 was presented with all the image pixels in a randomizedsensory-motor coupling. Thus, while one interpretatior/gt is
permutation order, thus having a training 4800-times larger than visual change detection, it is learned similarly‘t’éy which are

other networks. Furthermore, it means that the input/output layer roper” inverse models [14, 21]. Hence, it can be used as a visual

of such networks had more neurons: networks that had one or tw erse model, or active vision [1, 23, 19]: given the current image an

camera inputs had four or six input neurons, respectively; network%1 oal image. what is the proper motor command? Conver\s’élﬁ/
that had a camera output had three output neurons (RGB). We thusg ge, prop ) ol

. : ; . can be used as joint-angle change detectors: given the current and
normalized the learning and pruning ratg,y, by scaling them by . . . .
. . . . previous angles, was the joint moved? The exhaustive construction
1/4800. We further factorized pruning by scaling the pruning rate, o
; of all subnetworks brought these novel concepts to light: (i) There
by one over the number of input neurons. ) ) )
. . e . is one-to-one mapping between inverse models and change detectors
Moreover we introduced a minor modification to expedite learn-_ " .. . ; . -
. . . . AR and; (i) only active sensing coupling enables autonomous learning
ing: Motor commands were continuous in their regime,” €

. i L of internal models and change detectors.
[—1,1]. However, learning visuo-motor correlation is more related
to the existence of motion, rather than its direction. Learning to

distinguish betweerm,*?| usingm}? is very difficult and time- 5.1.2 Second level
consuming for a small ANN, since it is non-monotonic. Hence,EqS_ (1-3) result ir1|D(2)\| - 17 and\|L<2>|| — 1872. This was

for al! subnetworks in the first level that contained at least one Vi'computationally too expensive for the setup we have considered, so
sual input and at least one motor coT)mand, the latter was takefyade the following restrictions: (i) only the arm motor was con-
to be2 its absolute value. For example") = p(m¢|ci, ci1) = sidered,m;, p}; (i) no sensory or motor delays were considered,
p(|millee, ci—1). , i i dh? = db23 = 0; (iii) only the arm motor internal models and
Viable subpetwor(li? The w;’:\blle nletwork?ll)n the elnd ?f tq's PIO" the visual change detection were takizf[ﬂ)3 - and; (iv) only subnet-
cesswere (Fig. 3}, " = p(mu|pi,pi-1), Voo = p(pilmi,pi1)  works that had at least one visual component were considered. This
and V" = p(pi_,|pt,mi) representing the inverse, forward and resulted in a total off L(*)|| — 72 subnetworks. While this is consid-
postdiction internal models of the arm motor, respectively [29]; eraply less than the exhaustive pool, it is still large enough to demon-
VD = pmipdp?a), VAV = pim?,p?_,) and V{Y = strate all the proposed concepts. All the subnetworks had two hidden
p(pi_1|pi, m7) representing the inverse, forward and postdiction IM |ayers with ten neurons each, afid= 5, = 0.1, v = 0.001. The
of the camera motor, respectively, an%“) = p(mile, ci—1), robot moved its arm motor randomly for 10,000 time steps, in which
x/gl) = p(ce|m?,ci—1) and Vg(l) = p(ci_1|ce, m?) represent-  concurrent learning and pruning was performed on all subnetworks
ing the inverse, forward and postdiction IM of the camera mo-in parallel.
tor and camera image, respectively. Three more networks were vi- The second level of the hierarchy represents a higher level in the
able, but their corresponding prediction maps hold no informationVisual pathway, one in which features are detected [15]. Hende,

V1<01> = plei_1|p?, Ct),‘/l(11> = pleilp?_1,ci—1) and V1(21> — this level was set to be a 7x7 RGB pixel array. As W?th the previous
p(p2_1|m2, c;). We believe that further learning would have resulted '€vel, €ach time step all 7x7 arrays composing the image were pre-
in their pruning. sented to the subnetworks in a randomized permutation order. Sim-

The first six viable networks have been described intensively irflarly, the number of the input/output layers’ neurons were enlarged
the literature [14, 21, 29]. For a 1 DOF constellation they are very@nd the learning and pruning rates were rescaled. Since all the sub-
simple, whereas for more DOF there are known problems, mainly imetworks had at least one image component, the rescaled learning
the inverse models [14, 21]. However, this is not the main topic offa€ was always much smaller than 1.

the paper and thus we do not elaborate on it. Viable subnetworks. Only five subnetworks were viable at the
. 2 1
Of special interest isV7(1) = p(m?|er, ei—1) (Fig. 2(c)); it re- end of the process (Fig. 4), nameil’sf_)5 = p(V7( )\ct,K), where
ceives the current image, the previous image and learns whether tHe¢ = {m%,p},Vfé{S}. Three more subnetworks “survived” the

camera motor has moved. In a non-homogeneous visual enviroflearning and pruning process, but held no informatimj_z) —
ment, when the camera moves, most of the pixels’ colors chang%(p%‘mtl V(l)) V@ _ p(ptlce V(l)) andv.® — p(ptlct V(l))
when the camera does not move, most of the pixels’ colors do n s ! L 7 3

h H thi bnetwork Eu v d Olgxaminingvl(f)5 reveals that in the implemented learning schedule,
change. Hence, this subnetwork represenaionomously learned ;o only a moving arm, they are all similar; they learn the trans-

V|su_al change detector. . . formation from image patches;, to moving objects in the visual
Flgur_e 3 shows the learned mapping of the _V|able subnetwork%eld VY. Since the only moving object in the training set was the
of the first level. As can be seen, the motor’s internal models are [

(almost) linear mapping/.") is the visual change detection: as de- arm itself, they all represerdutonomous learnin@f visual self-
X 7 oo recognition, Fig. 2(d).
scribed above, the output was rescaled to be 1 for motion and -1 for _. . .
. ; : . . . . Figure 4 shows the execution output of the 8 viable subnetworks of
no motion. This shows that if two pixels are identical, the output is ) ) ) . (2
-1, whereas if they are different, the output is 1, constituting a trud€Ve! tWtO' r’?‘slgan be _sefem{%_are t;;]racat_lctgllyt_lderglcial. Wht':]% J
change detector. Notice thﬁg‘g are similar and represent the visual >eems to hoid some information, the distinction behween the arm an

prediction: if there is no motion (left side), the output pixel is iden- ba&l;%g)l;nduljs; EXtrOetrr?erl)\l/vsTka”Have hown autonomous learning of
tical to the input pixel; if there is motion (right side), nothing can be catures. Er WOrks shown autonomous learning o

id of th tout pixel. Finallv. th ﬁ]“) |  flat visual self-recognition [20, 17, 5], yet none have done so in a hi-
said ot the oulput pixel. inatly, e Maps b, -, are aimostfial, o 5 rchical manner starting from raw sensory data. Rather, all have
representing no information or correlation.

] . . . used intensive pre-programmed image processing prior to learning.
Novel features. The nine viable networks of the first level hint to- bre-prog 9e p gp 9

. . Furthermore, while we have not used the fully exhaustive second-
wards a more general concept of autonomous learning: active sen

ing circuits [4, 28], whereby motor commands influence sensory in Revel subnetwork pool, due to computational hardware limitations,
Ing circul 2oL W y . > INTu Y Minis mappingemergeds the only viable and functional mapping out
formation, enables autonomous learning of internal models of th

%f 72 others.
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Figure4. Execution map of the viable level 2 subnetworks. Figure5. Prediction error of all 63 subnetworks of level 3 (see Append
Reliable networks are emphasized. Dashed black line dédimebability
threshold.

5.1.3 Third level age processing prior to learning. Furthermore, this is the first time,

. . . . o the best of our knowledge, that the same algorithm produces mo-
Since we have shown the equivalence of the five viable seconc{- 9 9 P

. ion detection, visual self-recognition and visual-to-arm coordinate
level subnetworks, we can augment the data set with only one, e. ansformation
V,®). This still results in a large exhaustive pool of subnetworks, '
so we made the same restrictions as in the second level. Further-
more, we have introduced a modification to the execution of secb.2 Reaching Network

ond level viable subnetworks whose output was a single-chann . .
P 9 e\}\/e next wish to constructeosed loopwiring between learned sub-

image. This is usually due tdetectionof visual objects and hence ; : 3 f .
. : . . L networks that begins with sensory information and ends up in a motor
its magnitude is not important, only its sign. We therefore changed;

. command. Byclosed loopve mean that there is no external goal or
output € [~1,1] = output € {~1,1}, by thresholding a0. ask, but that the motion of the motors are determined by the wiring

This only expedited the learning of the higher levels, and does nOi%t§elf. Hierarchical construction followed by pruning resulted in the

change the results of the paper. For example, the execution OUtIO*‘Jollowing viable and reliable subnetworks: nine networks from the

2 _ (1) 1 ;
VSTh_ p(‘ﬁ ‘i.“pt) wasltset t(%be_thggslgnbof :he ?(Utpg.t n%uron. first level, five equivalent subnetworks from the second level and
ese alterations result ji.™|| = 63 subnetworks, Fig. 5 (see twenty equivalent subnetworks from the third and last level.

Appendix). Ag.ain, .thi.s is a rather small pool, but can still demon- We focus on the motion of the arm only, hence the subnetwork
strate the basic principles presented here. All the subnetworks ha‘,ﬂ the end of the closed loop must have an output of an arm motor-
two hidden layers with ten neurons each, with parameters- . V- )

related parameter, Fig. 6. The arm’s inverse monIléll, is the natural

0.01, @« = 0.1. The robot moved its arm motor randomly for 100,000 . . .
. . . . subnetwork that obeys this requirement. However, some of the third
time steps, in which only learning was performed on all subnetworks 3) . )

evel subnetworksy/ (see Appendix), have the inverse model

in parallel. Since this is the last level of the hierarchy and the subnet : 1318 :
works had numerous input neurons (see below), pruning proved t§S their output and thus also obey that requirement. )
be an inefficient mechanism for distilling viable networks. Hence we The image-arm coordinate transformation subnetwotks’)
employ a prediction error thresholekyreshola = 0.1; subnetworks (€€ Appendlx) are the 'only non-trivial su_bn_etworks that can serve
whose average prediction error did not decline below it at the end oftS @n input to the arm’s inverse model. This is so because these sub-
the learning stage were deementeliable Fig. 5. networks have eithes; or X/2<1>, which is the forward model of the

The third and last level of the hierarchy represents the highest levéd'm, as their output. This equivalent class transforms visual self-
in the visual pathway, one that considers the entire field of view [6].recognition,V,*’ to the arm's angle, regardiess of the other input,
Hencec; in this level was set to be the entire image and in contrarye.g.m;, c;. Hence, these are actuallyla— 1 subnetworks. How-
to the previous two levels, a single presentation was done in eacéver, since they are third-level subnetworks, they have an ingheof
time step. Furthermore, rescaling®fvas not required. whole imageresulting in 4800 input neurons.

Viable subnetworks. Twenty subnetworks ended up reliable, We focus on the arm inverse model. During execution, the inverse
Vl@zo (see Appendix). However, they have several things in com-{nodel receives the current position of the arm and should receive a
mon:V1<2) is always an input (and not an output), and the output Con_goal position. However, since we are interested in a closed loop, the

sists of arm parameters (not image, or change detection). From th%Oal should comeQIf)rom angt)her subnetwork. The viable candidate
and further analysis, one can interpret the learned correlation: it is thePnetworks aré’, ;* and V, ™, where the former group closes a

transformation between the visual location of the handWi?ﬁ and trivial loop of forward/inverse models of the same motor. The latter
the current arm position. Hence, this constitiaesonomous learn- group are equivalent and transform a visual image to an arm coor-

. . .. 3 2
ing of visual-to-arm coordinate transformation. dinate, so I‘?)r 5|mp(lin):|ty we choose” = p(p}[V{¥, m}). The
Novel features. Previous works have described algorithms for co- Wiring of V;** — V"7 results in motion towards a visual object. Fi-
ordinate transformations [22]. However, they employed intense imnally, V1(3) receives &ingle channefullimage as its input. Six viable



Arm

coordinate transformation subnetwdr%f’) should receive its input

i from the self-recognition subnetworkfl(z), and not the motion de-
| tection oneV7(1), as in the execution phase. This requires the mainte-
nance and re-learning of subnetworks that do not actually contribute

to the reaching task, e.g,"” .

Visual change (1)
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subnetworks produce this output, naméﬁfﬁ)5 and V7<1>. The for-

mer five are equivalent, representing the arm'’s visual self-recognitio N'I:igw)e (7-) ﬁe?"cm?gl a m_(t’_"ing ]?bjeq Withb?or‘tc(‘glrerl‘(t)'eag?g (Se)e Supp.
- o : . ovie). (a) Horizontal position of moving object (black) aadn (gray) as a

(Fig. 2(d)) a'nd res.ult In terlgI motion Of .the ar.m towards itself. function of time steps. (b) Percent change of motor (black)camlera

The latter’'s motion detection capabilities (Fig. 2(c)) close the loop: (gray) parameters.

(ctoei1) — VI = v — v In words, two consecutive
images produce a change map; coordinate transformation transfers
the location of detected changes into the arm’s position; the arm’s

inverse model produces the correct arm motor command to reach Fyrthermore, we have implemented a specific arm and camera mo-
towards the moving object, Fig. 6. tion schedule to improve learning during the learning phase: mo-
As mentioned above//? |, can also be the final subnetworks of tion detection was learned quickly because the camera consecutively
the closed loop (see Appendix). Analyzing their input/output rela-moved and then rested; arm visual self-recognition and coordinate
tions show that they are equivalent and can serve as a combinatiaransformation were learned when only the arm moved. This means
of visual-to-arm coordinate transformatiandinverse model. This  that during the reaching execution stage, some biases could be in-
means that one can replace the wirig") — V*), — V" de-  troduced. For example, if motion detection were learned only when
scribed above withZ\" — V% .. We have not done so in the thearmmoved, it would re-learn that only arm features contribute to
robot implementation in order to show that several subnetworks cafmotion detection and would not average out all possible pixel com-
be executed and concurrently re-learned. binations to produce a true motion detector. Hence, in the sequence
We wish to emphasize that the presented execution circuit is thgemonstrated in Fig. 7(a), motion detection was not re-learned, due
only functional non-trivial closed loop composed of viable and re-to the camera’s immobility. However, the rest of the components,
liable subnetworks that operate the arm. The other possible wiringsamely, V", V,*) and V) were learned concurrently with the
that result in motion of the arm perform trivial motions, such as mov-reaching execution.
ing towards the current position of the arm, i.e. not moving. While In the testing of the entire reaching network, we have added
we have introduced learning schedule restrictions in the second arahother LEGO Mindstorm motor that controlled a moving object,
third levels, the process has still demonstrated extreme convergendeig. 2(a,blue object;c). It was moved to a random position to the
from a total of168 + 72+ 63 = 303 initial subnetworks, exuberance, left and then right of the image where it then made a sudden move,

pruning and reliability reduced the pool to a mere5+20 = 34 vi- Fig. 7(a, black). The reaching network was then executed and mon-
able and reliable subnetworks, which can produce a siglergent  itored via the camera, Fig. 2(a,red hand;d). We have also introduced
functional closed loop, namely, reaching a moving target. gradual changes to the robot’s sensors and motors to ascertain its

concurrent execution and re-learning capabilities.

Figure 7(a) shows the horizontal location of the two detected en-
tities, namely, arm and object and nicely demonstrates how the arm
Since all the components of the reaching network can be aufollows the movement of the object. The figure first shows initial cal-
tonomously learned, the network possesses a unique characteristibration errors, corrected after 70 times steps (see Supp. Movie). Itis
it can continuously and autonomously re-learn all its elements. Wéollowed by an introduction of a slow change in the motor plant of
have shown that the inputs to the viable subnetworks are differerthe arm, whose maximal power increased2b¥ and a degradation
in the learning and execution phases. Hence, during execution aif the red channel of the camera&6% of its value, Fig. 7(b). As
the reaching motion, re-learning requires another “pass” through thean be seen in Fig. 7(a), the reaching motion is again accurate after
learning network. Thus, for example, during concurrent learnireg, th the change due to the network’s concurrent re-learning capabilities.

5.3 Concurrent Execution and Learning



6 Reated Works not know which sensory information correlates with which motor
command. Hence, starting with an exhaustive connectivity and then

In [5] an information theoretic approach was taken in order to aupruning away the non-functional elements in a hierarchical manner

tonomously learn what a robot can control. By using mutual infor-results in reduced hierarchical complexity.

mation and moving its own hand, the robot could discern its hands \we have focused o2 — 1 correlations and not all-to-all corre-

and then its fingers. However, the model included image processingtions, as in self-organizing maps [27], in order to show the emer-

in order to extract the relevant information measures. gence of specific functional networks, e.g. motion detection and self-

Ref. [30] explores several models of learning how to reach, whosgecognition. Had we constructed the first level network to have all the
main features are the learning of internal models, namely, forwarghputs and one output, e.g. the camera motor comméndg | D),
and inverse kinematics and dynamics of the arm. While the suggesteghould not have learned motion detectipfm?|c:, c; 1), since the
model autonomously learns these internal models by moving the arngamera motor inverse modgelm? |p?, p;_1) would have better pre-
it does not address the issue of arm self-recognition, but rather usgficted the motor command. One may thus conclude that dividing the
intense image processing to acquire the external coordinates of theput information to subsets is beneficial for constructing a truly ex-
arm and the objects it interacts with. haustive map of learnable transformations.

Another humanoid robot was used to autonomously learn the co- Furthermore, the architecture presented here used a large initial
ordinates transformation between the head and the arm [22] Thiﬁetwork and then utilized pruning. One may have Opted for starting
was done by using a fixed gaze by which the head was turned t@ith a small network and increasing it via, e.g. cascade correlation
keep the hand in the center of the image. Then the head and arm pretworks [7, 16, 31]. However, since there is evidence for death of
prioception angle information was used to autonomously learn thenactive neurons, but less of increase in the number of neurons in the
coordinates transformation. brain, we believe that pruning connections and non-active neurons is

Work of the same group [20] has also implemented learning of thenore suitable to our brain-inspired framework than adding neurons
self via periodic motions of the hand and finding the correspondingo a network. A thorough comparison of the performance of the two
image features. Furthermore, building saliency maps of the visuabptions is beyond the scope of this paper.
image and interacting with the environment, enabled building object The proposed model and its implementation give rise to several
models in the vicinity of the robot. interesting aspects of autonomous learning in general. From a neuro-

Building hierarchical learning networks that extract higher or- piological perspective, the specific suggested architecture for learn-
der correlations in the data was also performed by several groufifig how to reach has a novel prediction that suggests connectivities
[12, 25]. However, they have focused on image processing, whilghat are mandatory in order to achieve learning, e.g. an efference
the model presented here focuses more on the interaction betweeBpy of the eye muscles must reach the first motion detection station,
the motorized action and sensors, both visual and proprioceptiofwhich is as low as the retina. However, it seems unlikely that basic
Ref. [33] learns generalized value functions which indeed relate:hange detection is a learned quality of the nervous system, since
states and actions, but does not perform an exhaustive search ov@any (if not all) low-level neurons have that characteristic. How can
these possibilities. Another related model is that of Hierarchical Temthis be resolved? First, the question we ask is fundamental: what can
poral Memory [9], which learns temporal sensory information in dif- be learned, expanding beyond what indeed is learned in biological
ferent hierarchies, where the time-scales change with hierarchy levedystems. Second, evolution may also play a significant role, i.e. it is
The model presented here focuses more on the sensotgrcorre-  possible that lower species have a learned motion detection archi-
lations with the emphasis of creating a functional executable circuitecture, but higher ones developed a genetically-encoded mechanism
from the learned and viable subnetworks. This novel focus highlightso achieve the same goal. This has the added advantage of requiring
the relevance of active sensing [4, 28] to the autonomous learningss time to manifest, meaning an organism with a “hard-wired” mo-
paradigm. tion detector will detect motion earlier in development than one that

In the current implementation, we have used random motion irhas to learn it. Furthermore, it enables the learning neuronal system
order to learn the sensory-motor correlations. However, many workgo focus on more complicated sensory-motor correlations, i.e. higher
have implemented active learning concepts to expedite such learningops. Third, the biological substrates that living organisms are made
(see [10] and references therein). More specifically, the condept f have some inherent qualities, and change detection, or other sim-
intrinsic reward that originates from learning these transformation i9p|e transformations, may be one of them, thus eliminating the need
a promising avenue of research [24, 32, 11] and will be explored inp learn it during development.
future work. Another important issue is what determines the overall execution
connectivity of the viable subnetworks. A possible biological reason-
ing is that initially all the subnetworks are connected to each other
and only those that serve some purpose and achieve a specific (re-
A brain-inspired novel algorithm implementing the prevalent con-Warding) goal survive in development. Hence, one can picture a fully
cept of exuberance [13] was introduced: it starts by constructingfonnemed network in which all ava_ulable mfprmatlon serve as both
an exhaustive pool of subnetworks and then during learning prund§Put and output to many correlation-learning neuronal networks.
away those that are presented with uncorrelated data sets. Repedfl€S€ networks are then only way-stations to other neuronal net-
ing the procedure in a hierarchical manner results in a poei-of WOrks that serve as the second tier in the hierarchy and so on. Se-
able andreliable subnetworks that represeait the correlations the ~ |€cting which network will be activated and which will control the
agent can autonomously learn. These serve as an alphabet to cdRYSCles atany given moment probably involves a rewarding mecha-

struct executable circuits that perform specific tasks, with concurrerfiSm which is beyond the scope of the present work.
autonomous learning of all composing elements. The exhaustive constructive algorithm has also surfaced a novel

The complexity analysis presented above can hint to the underlycONCePt relating active sensing [4, 28] and autonomous learning: in
ing cause of exuberance in the brain [13]. Initially, the organism doedhe firstlevel of the hierarchgnly active sensing sensory-motor cou-

7 Discussion



plings produce viable subnetworks and those represent internal mo¢\ppendix; Level 3 Subnetworks
els. Specifically, the inverse model subnetworks can be used in two
complementary ways: (i) determining the proper motor command to (3)

V¥ |pt,m}) LY = p(v®|p}, e

achieye a spepific sensory goal and; (ii) detecting changes in the sen- L%S) B 11 @) o 1)
sory information. g = plmalpe, Vi) Ly = pleepe, V™)
Finally, the proposed implementation of the exhaustive architec- L5 = p(V\"[pt, V&) L&Y = p(viV |p}, Vi)
ture is just the first step towards a more complex network with many LYY = p(V, " |pt, Vi) LY = p(viiV |pt, Vi)
more capabilities. One can think of new subnetworks in all levels of L = p(V® |pt, vy LY = p(v@|pt, vV
the hierarchy: a network that learns to map a visual receptive fieldto - 1% — v, pt V() L) = p(vi?pt, V7(1))
the specific diregtional .motion of the eye can learn orientation lines Lg) _ V1<2) Im?, cr) L(li) = p(pt|ml, V1(2))
and edge detection; using two cameras, one can autonomously learn Lfg’ — plci|ml, Vf”) ng) > (I)Imtl, V1(2)

a stereoscopic coordinates transformation; head, torso and leg move-
ments can also be autonomously learned and add more flavor to a
much richer network.

To conclude, we have developed a methodology of an exhaus- Lé?
tive hierarchical construction of autonomously learning agents. We Lé‘?
have shown that by implementing exuberance and pruning, only vi-
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can produce a completely autonomously learned reaching arm, that is
robust to noise due to its concurrent execution and re-learning capa-
bilities. We envision that this model can be implemented on virtually

any robotic agent and can augment existing pre-programed algorith- Lé?,)
mic controls. Ly

)

able and reliable networks that actually encode correlations in the L;i? = V3(1>|Ct7 V1(2>) (2))

sen;ory-motor |qformat|0n survive. Those augment higher Ieve]s Lé‘? _ V(1)|ct V(2>) Lé%) =p ‘/1(2>|Ct7‘/1<1))

available data to introduce more complex subnetworks. We have im- : ) 1B _ V(2)|c V(l))
plemented it on a robot and showed that three levels of the hierarchy %3, @ b 1) &) p h (;)’ 20 (6)

Lyz =p(Vy 7 e, Vi) Lyy =p(pe[Vi 7, V)
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The twenty viable subnetworks can be grouped into three equiva-
lent classes:

1. Subnetworks with arm angle-related outpuvl(f)lg =
3 . 1) -
Lg4),24,34740,46¢52,7,18,28,38,44757' Notice _that V_2< _) 1S the for-
ward model of the arm motor and during training is completely
equivalent tqp;.

2. Subnetworks with arm motor-related output/.'l(;’l18 =
Léfw 26,43,49,55+ Notice thatV,") which appears as an output in
these subnetworks is the inverse model of the arm. During training
it is completely equivalent tea} .

3. Subnetworks with the arm’s previous angle outgut 3120 =

L{? ;. Notice thatV" which appears the output in these sub-
networks is the postdiction model of the arm and during training
is completely equivalent tp;_;.
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