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Abstract. Autonomous learning is the ability to learn without exter-
nal teachers. Whatcanan agent learn autonomously? To answer this
question we propose a hierarchical exhaustive combinatorial con-
structive algorithm. It generates subnetworks that attempt to learn
all possible correlations between subsets of available raw data from
the agent’s sensors and motors. Using the concept of pruning, sub-
networks that are presented with uncorrelated data sets are removed,
resulting in a small pool ofviablesubnetworks. These augment the
raw information dataset in higher levels, in which the exhaustive con-
struction and pruning are repeated. The end result of the hierarchi-
cal process is a pool of viable and reliable subnetworks that repre-
sentall the correlations the agent can autonomously learn. One can
then construct full networks by wiring learned subnetworks in or-
der to perform specific tasks. The algorithm is implemented on a
robot with a moving camera and an arm, highlighting novel con-
cepts regarding active sensing and autonomous learning. We show
that the robot’s autonomously learned viable and reliable subnet-
works are its sensory-motor internal models, motion detection, vi-
sual self-recognition and camera to arm coordinate transformation.
The robot’s only non-trivial closed-loop execution network is shown
to perform reaching movements towards a moving object and is ro-
bust to noise and changes in the robot’s sensors and motors due to its
concurrent execution and re-learning capabilities.

1 Introduction

One of the brain’s greatest virtues is its ability to learn. However, one
can distinguish between two learning categories, namely, external-
or teacher-mediated learning and autonomous learning, i.e. learning
from internally accessible information. While naming of objects and
colors is externally taught, e.g. one must be told that the word “yel-
low” is associated to a specific color perception, controlling your own
body movements is autonomously learned [20, 5]. However, learning
reaching movements are not so easy to classify [30, 2].

In this contribution we address the question: whatcan be au-
tonomously learned, without external teachers? We wish to model
our view of the brain’s solution to this question. For this reason
we construct a hierarchical neural network that attempts to au-
tonomously learnall correlations between available data, given an
agent’s sensors, motors and performed actions. Byall, we mean an
exhaustive combinatorial construction of subnetworks, representing
all possible subsets of available data, wherein each subnetworkat-
temptsto learn a specific data subset’s correlation. Many such sub-
sets hold no correlations and are thus unlearnable; by employing the
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concept of pruning [26, 8], the associated subnetworks becomenon-
viable, i.e. networks with no contributing neurons. The phenomenon
in which an over-sized neuronal network is first initialized, followed
by elimination of non-active elements is prevalent in the brain and is
called exuberance [13].

Hierarchy is achieved by augmenting a higher level’s available
data by lower levels’ viable networks. Thus, a new level exhaus-
tively constructs subnetworks that attempt to learn correlations be-
tween outputs of lower levels’ networks and raw sensory-motor data.
Exuberance and pruning follows in order to distill the viable and reli-
able subnetworks of this level in the hierarchy. The process continues
for higher hierarchical levels.

The end result of the hierarchical construction is a pool of subnet-
works that representsall the correlations the agent can autonomously
learn. This pool can then be wired in such a way so as to perform
specific tasks. Since the agent cannot learn any other correlation, the
combination of all possible wiring of the subnetwork pool represents
the entire repertoire of tasks the agent can perform. Furthermore,
since all the elements are autonomously learned, concurrent execu-
tion and learning can be performed, overcoming calibration and de-
terioration errors on-line.

We demonstrate the process on a real robot, with a 1 degree-of-
freedom arm and a camera mounted on a single motor, representing
the eye. We show that the viable subnetworks of the first level of the
hierarchy represent only the internal models (IM) [14, 21, 29] of the
sensory-motor coupling, among which visual motion-detection is a
notable example. The second level uses the first level’s subnetworks
to learn more complex correlations, such as visual self-recognition
[20, 5, 17]. The third and final level encompasses the entire visual
field and autonomously learns visual-arm coordinate transformation
[22]. The viable and reliable subnetworks are then wired to achieve
theonly functional closed-loop circuit, given the learning schedule,
i.e. the only circuit that performs non-trivial action. The circuit per-
forms a reaching task, with concurrent autonomous learning of the
composing elements.

The novel features of this paper are: (i) a comprehensive brain-
inspired framework of hierarchical autonomous learning of sensory-
motor correlations; (ii) connection between autonomous and active
sensing paradigms; (iii) a single learning algorithm that generates
motion detection, self-recognition and hand-eye coordinate transfor-
mation; (iii) demonstration of a fully autonomous learning reaching
robot.

The paper is organized as follows. We begin with a brief descrip-
tion of the model architecture and framework in Sec. 2. We then
present in Sec. 3 the mathematical notations of the agent, data sets
and subnetworks, followed by a description of the learning and prun-
ing processes. Section 4 details the hierarchical exhaustive combina-



torial construction of all the subnetworks, followed by an analysis of
the growing complexity of the network and possible execution tasks.
Both sections are accompanied by a running example (Fig. 4), whose
details are given in Sec. 5. Related works are decsribed in Sec.6 and
the discussion in Sec. 7 concludes the paper.

2 Model Architecture and Framework

The main concept behind the proposed architecture, Fig. 1, is au-
tonomous learning of sensory-motor correlations. The implemented
algorithm isinternally supervisedlearning, i.e. supervised learning
where a “labeled” training set is provided by the agent itself. This is
not a form of unsupervised learning [34, 25], but rather learning to
predict correlations between subsets of available information. This
information is the time-series of raw data from the sensors and mo-
tors of the agent, Fig. 1(a).
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Figure 1. Model architecture, where each subnetwork (numbered circle)
autonomously learns the correlation between two inputs (black arrows) and
one output (gray arrows). (a) Level 1 construction ofall subnetworksL(1),
given camera sensor and a motor informationD(1); followed by pruning

that leaves only one subnetwork viable,V (1). (b) Level 2 construction ofall
subnetworksL(2) that include level 1 viable network; pruning leaves only

subnetworks 3 and 5 viable,V (2).

The architecture construction is exhaustive in the sense that corre-
lations between all subsets of available information are learned. We
are interested in a brain-like architecture and thus employ a prevalent
phenomenon in the brain called exuberance [13], which describes a
rapid growth of connectivity between many neurons on many lev-
els, followed by deterioration of unused or non-correlated connec-
tions. In our implementation, each subnetwork is an artificial neural
network, initialized with many hidden neurons, followed by prun-
ing [26, 8] of neurons whose decaying weights are smaller than a
given threshold. If no correlations are present, the pruning process
will result in a non-viablesubnetwork, i.e. a network with no con-
tributing neurons, thus exemplifying the network’s inability to learn
the subset’s correlation. In some situations, usually for large-input
subnetworks, pruning still results in a viable subnetwork, but it isun-

reliable, i.e. its prediction error even on the training set is high, thus
exhibiting another form of inability to learn.

Following the brain’s hierarchical structure, our proposed archi-
tecture is hierarchical in the sense that higher level subnetworks learn
correlations between lower levels’ subnetwork outputs and the raw
sensory-motor information. This is reminiscent of cascade correla-
tion networks [7, 16, 31] in which each new hidden layer neuron is
connected to the input layer and lower-level hidden neurons. How-
ever, in our construction, each correlation learned is a whole (learned
and viable) subnetwork that augments the input-space and allows
learning of new correlations.

More specifically, in the algorithm’s first level of the hierarchy,
only raw unprocesseddata from the sensors and motors are used in
the aforementioned process, which ends with a small number of vi-
able subnetworks, Fig. 1(a). In the next level of the hierarchy, the
previous level’s learned and viable subnetworks are combined with
the sensory-motor data, Fig. 1(b). Another exhaustive combinatorial
construction of new subnetworks is performed, where now each sub-
set must includeat leastone learned subnetwork from the previous
hierarchical level. Exuberance and pruning follows in order to distill
the viable and reliable subnetworks. The process continues for higher
hierarchical levels.

While hierarchical construction of unsupervised learning networks
have been used on pure sensory data, e.g. images [12, 25], our con-
struction focuses on internally supervised learning of correlations be-
tween sensory flow and motor actions. Hence,active sensing[4, 28],
in which sensors are moved and controlled by the agent, is paramount
to the understanding of the learned correlations. These represent
what the agent can learn and predict about its own body and how
it senses the environment in an active fashion. Thus, the agent can
learn to predict an actuator’s influence on its mounted sensor’s in-
formation flow, as well as learn to determine the appropriate motor
command that will generate a specific sensory input. These are the
active sensing counterparts of the forward and inverse models, re-
spectively [14, 21, 29].

3 Agent and Subnetwork Notations

This section introduces the basic elements of the proposed model,
namely, the agent, its sensory-motor data and the subnetworks. The
subnetworks’ learning and pruning processes are then described. The
section is accompanied by a running example of the implementation
of the process on a real robot (Fig. 2), to better elucidate the finer
details of the model.

3.1 Agent and Sensory-Motor Data

The agent is composed ofNM motors andNS sensors. The former
executes motor commandsmi

t, i = 1, . . . , NM and the latter re-
ceives sensory inputsj

t , j = 1, . . . , NS . The dataset time-series is
composed of copies of the motor commands, known as efference
copies [18, 3], and sensory input, with possible delays:D

(1)
t =

{mi

τi
m

, sj

τ
j
s

|τ i
m = t, t − 1, . . . , t − di

m; τ j
s = t, t − 1, . . . , t − dj

s},

wheredi
m is the maximal delay of theith motor command anddj

s

is the maximal delay of thejth sensory input. The(1) superscript
denotes the first level of the hierarchy, which has||D

(1)
t || data ele-

ments.
Example. The example agent is a LEGO Mindstorm robot

(Fig. 2(a)) withNM = 2 motors; the first controls an arm and the
second the camera. It hasNS = 3 sensors, where the first two are
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Figure 2. (a,b) Two consecutive images as captured by camera,ct, ct−1.
O marks the center of the arm, X marks the center of the moving object. The

line shows the distance between the two. (c) Output of motion detection

subnetwork,V (1)
7 . (d) Output of visual self-recognition subnetwork,V

(2)
1

(see text for details).

proprioception sensors of the motors,p1,2
t := s1,2

t , i.e. report the
motor angle, and the third is the camera,ct := s3

t . The camera is
composed of80 × 60 pixels, and we shall consider an increasing re-
ceptive field with increasing hierarchical levels, ranging from a sin-
gle pixel in the first level, through patches of 7x7 pixels in the second
level, up to the whole image in the third level of the hierarchy (see
below). We consider no motor delays,d1,2

m = 0 and a single time de-
lay for the sensors,d1,2,3

s = 1. Thus the data set at each time step is
D

(1)
t = {m1

t , m
2
t , p

1
t , p

1
t−1, p

2
t , p

2
t−1, ct, ct−1}, with ||D

(1)
t || = 8.

3.2 Subnetworks, Learning and Pruning

Subnetworks. A subnetwork is a function approximator that at-
tempts to learn the correlation between elements of the data set. It
is denoted byLijk = p(Di|Dj , Dk), ∀i, j, k ∈ D, i 6= j 6= k 6= i,
where the subscripti, j, k are indexes of the data-set elements (differ-
ent from the subscriptt, which indicates the current time step of the
wholedata set). We have restricted the subnetworks to a2 7→ 1 net-
works, i.e. only mapping of two dataset elements to another, where
extensions to more elaborate mappings is straightforward. Hence,
there are||L|| = ||D|| × (||D|| − 1) × (||D|| − 2)/2 possible sub-
networks. The implementation of the subnetworks is via an artificial
neural network (ANN), with input neurons that receive the data ele-
mentsDj , Dk, several hidden layers and output neurons that encode
Di.

Each subnetwork was taken to be multi-layered in order to allow
learning of complex sensory-motor correlations. A-priori the correla-
tion is not known, and hence initially a complex network is required
for all subnetworks to allow generality. Furthermore, in this imple-
mentation there is a unique approximated output for every input ele-
ment, i.e. the function approximation is deterministic, eliminating the
need for probability normalization. It is also imperative, for proper
comparison, that the ANN structure and parameters be the same for
all subnetworks. Thus, all dataset elements were normalized to be
D ∈ [−1, 1] and saturated-linear transfer functions were used in the
output neurons.

Learning. Motion of the agent’s motors produces the dataset time-
series, which is treated as the subnetworks’ training set. Autonomous
internally supervised on-line learning proceeds with the presentation
of this dataset time-series toall the subnetworks, in parallel. We have
implemented a back-propagation learning algorithm, with learning

rateβ and momentumα.
Pruning. Concurrent with the learning algorithm, we have im-

plemented a pruning algorithm [26, 8] via weight decay. An ad-
ditional penalty term was introduced to the ANN weights’ update
rule in the form of−γsign(wij), where0 < γ < 1 is the pruning
rate andwij is the respective weight. Hence, the full update rule is
given by∆wij = βǫf ′(x) + αwij − γsign(wij), whereǫ is the
(backpropagated-) error andf(x) is the neuron’s transfer function.
For each level we have chosenγ to be proportional to the overall
learning time of all networks, i.e. while learning and pruning were
concurrent, as expressed in the update rule, effectively pruning man-
ifested after learning (were possible) was stabilized.

At each time step, the sum of the absolute weights for each neuron
in the hidden layers (both input and output weights) was compared
to a given threshold,hthreshold; if the sum was below the thresh-
old, that neuron was pruned. If the last neuron of a hidden layer
was pruned, the subnetwork was deemed non-viable. Furthermore,
for subnetworks with only two input neurons (see below), the sums
of the absolute weights of the input neurons were calculated. If one
sum was more thanimul times greater than the other, the subnetwork
was termed non-viable, since it depends only on a single input, and
not both. We denote the viable subnetworks byV ⊆ L.

Example. Since the robot’s raw dataset has||D(1)
t || = 8 ele-

ments, there are a total of||L(1)|| = 168 possible subnetworks.
One example of a viable subnetwork is the first motor’s forward
model [29]L = p(p1

t |p
1
t−1, m

1
t ), i.e. the prediction of the next mo-

tor angle, given the previous angle and the given motor command.
L = p(p1

t |p
2
t−1, ct), on the other hand, is non-viable since there is

no correlation between the first motor’s angle, the previous other mo-
tor’s angle and the current image pixels.

4 Hierarchical Construction

Using the general notations described above, we proceed to the ex-
haustive combinatorial construction of the subnetworks in an hier-
archical fashion. We first describe the augmentation of the dataset
by previous level’s viable networks and then produce the current
level’s subnetwork pool. A complexity analysis follows, showing the
double-exponential increase in network complexity, had exuberance
and pruning were not implemented. The exact increase in complex-
ity cannot be a-priori computed since it depends on the agent and
its environment, but a drastic decrease in complexity results if one
assumes proportional pruning. The viable and reliable subnetworks
allow the wiring of specific circuits that can perform specific tasks.
This is discussed at the end of the section.

4.1 Dataset Augmentation and Subnetwork Pool

The first hierarchical level dataset is composed strictly of raw
sensory-motor data,D(1). Using these time-series as a training set,
a pool of subnetworks is composedL(1)

ijk = p(D
(1)
i |D

(1)
j , D

(1)
k ),

∀i, j, k ∈ D(1), i 6= j 6= k 6= i. However, not all subnetworks are
viable and following the process of concurrent learning and pruning,
a subset of viable subnetworks is producedV (1) ⊆ L(1).

The second hierarchical level now has access to the first level’s
viable subnetworks processed information, i.e. presented with the
raw sensory-motor dataset, the viable networks produce predictions
based on their learned correlations. Hence, the augmented second
level dataset isD(2) = D(1) ∪ V (1). One can then proceed to ex-
haustively construct subnetworks that will attempt to learn all possi-
ble2 7→ 1 correlations of the augmented dataset. However, only sub-



networks that includeat leastone of the previous level’s viable net-
works will be constructed. The rest were already learned in the previ-
ous level. The second level’s subnetwork pool is denoted byL

(2)
ijk =

p(D
(2)
i |D

(2)
j , D

(2)
k ), ∀i, j, k ∈ D(2), i 6= j 6= k 6= i such that

∃D
(2)
i,j,k ∈ V (1). The total number of such subnetworks is then given

by ||L(2)|| = ||D(2)||× (||D(2)||− 1)× (||D(2)||− 2)/2−||L(1)||.
Concurrent learning and pruning then follows to produceV (2) viable
networks.

This can be easily generalized to higher levels, as follows:

D(n) = D(n−1) ∪ V (n−1) (1)

L
(n)
ijk = p(D

(n)
i |D

(n)
j , D

(n)
k ),

∀i, j, k ∈ D(n), i 6= j 6= k 6= i s.t.∃D
(n)
i,j,k ∈ V (n−1)(2)

||L(n)|| = ||D(n)|| × (||D(n)|| − 1) ×

(||D(n)|| − 2)/2 −

n−1∑

m=1

||L(m)|| (3)

Example. The robot’s first level of the hierarchy produces
||L(1)|| = 168 subnetworks. However, only internal models (IM)
of the sensory-motor dataset have correlations (see below, Fig. 3).
These are presented to three subnetworks that relatep1

t , p
1
t−1, m

1
t

(IM of the arm); three subnetworks that relatep2
t , p

2
t−1, m

2
t (IM of

the eye-motor) and; three subnetworks that relatect, ct−1, m
2
t (IM of

the eye-motor and camera). Hence,||V (1)|| = 9 and||D(2)|| = 17,
resulting in||L(2)|| = 1872.

4.2 Complexity Analysis

One can consider the increase in the number of subnetworks as the
hierarchical levels grow. Assume that pruning is not implemented;
this results in changing Eq. (1) toD(n) = D(n−1) ∪ L(n−1). Thus,
denotingxn := ||D(n)|| andyn := ||L(n)||, we get the following
recursion relations:

xn = xn−1 + yn−1 (4)

yn = xn(xn − 1)(xn − 2)/2 − yn−1 y0 = 0 (5)

This results in double exponential dependency on the hierarchy level:
yn ∼ O(x3n

1 ).
However, one can counter this increase by the use of exuberance

and pruning. Consider that only a very small subset of the subnet-
work pool remains viable, such that||V (n)|| = κ||D(n)||, κ > 1.
This results in a drastic decrease in subnetwork pool complexity, to
a single exponential dependence:yn ∼ O(κ3(n−1)).

Furthermore, as seen in the example below, there is a possibility
that several of the viable networks areequivalent, i.e. they convey the
same information and are thus redundant. This may result in a linear
increase in the number of informative viable networks as hierarchical
level increases. This is indeed the case in the robot example analyzed
below.

4.3 Execution of a Task

Once the hierarchical levels’ viable subnetworks were learned, one
can construct a full network to perform specific tasks. This can be
done by connecting one subnetwork’s output to another’s input. No-
tice that during execution the inputs to the subnetworks may differ
from those during the learning phase. However, they must accom-
modate the inputs’ dimensionality and content.

In order for a task to be operational, the last subnetwork must have
a motor output. This drastically restricts the number of subnetworks
that may reside in the end of the task network. However, the number
of possible wirings cannot be a-priori computed, since the number
and characteristics of theviablenetworks are not known.

Example. One of the first level’s viable subnetwork is the arm’s
inverse model,V (1) = p(m1

t |p
1
t , p

1
t−1). During autonomous learn-

ing, it was presented with the known time-series, wherep1
t−1 was

the delayed proprioception input. However, during execution it can
serve as a mechanism to achieve a specific angle position,p1

goal:
V (1) = p(m1

t+1|p
1
goal, p

1
t ), i.e. it determines the next motor com-

mandm1
t+1 via the goal position and the current position. Hence, it

may reside at the end of a functional network.

5 Robot Implementation

We have implemented the proposed model on a LEGO Mindstorm
robot (Fig. 1(a), Supp. Movie), with a 1 degree-of-freedom (DOF)
arm, m1

t , and a single motorm2
t that controls the pan of a USB

camera,ct. As described above, the raw data set at each time step
is D

(1)
t = {m1

t , m
2
t , p

1
t , p

1
t−1, p

2
t , p

2
t−1, ct, ct−1}, wherep1,2

t is the
proprioception information relating the motor angle. First, the hier-
archical construction of the viable subnetwork pool is presented. It
is followed by a presentation of a possible wiring of the learned sub-
networks to accomplish a reaching task.

5.1 Construction of Viable Subnetwork Pools

5.1.1 First level

The first level data set,D(1), was used to construct an exhaustive set
of all ||L(1)|| = 168 possible subnetworks. All the subnetworks had
two hidden layers with four neurons each, andβ = α = 0.1, γ =
0.0001. The robot moved its arm motor randomly, and its camera
motor in a succession of random motion and then no motion. This
was repeated for 100,000 time steps, in which concurrent learning
and pruning was performed on all subnetworks in parallel, Fig. 3.
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Figure 3. Mapping of viable subnetworks of the first level. In order to
visualize the image-space, herect is taken to be the normazlized gray-scale

value of the RGB pixel inV (1)
7−12.

The first level of the hierarchy represents the lowest level in the vi-
sual pathway, e.g. retina. Hence,ct in this level was set to be a single
RGB pixel. During the learning process, a subnetwork that had either



ct or ct−1 was presented with all the image pixels in a randomized
permutation order, thus having a training set4800-times larger than
other networks. Furthermore, it means that the input/output layers
of such networks had more neurons: networks that had one or two
camera inputs had four or six input neurons, respectively; networks
that had a camera output had three output neurons (RGB). We thus
normalized the learning and pruning rate,β, γ, by scaling them by
1/4800. We further factorized pruning by scaling the pruning rate,γ
by one over the number of input neurons.

Moreover we introduced a minor modification to expedite learn-
ing: Motor commands were continuous in their regime,m1,2

t ∈
[−1, 1]. However, learning visuo-motor correlation is more related
to the existence of motion, rather than its direction. Learning to
distinguish between|m1,2

t | using m1,2
t is very difficult and time-

consuming for a small ANN, since it is non-monotonic. Hence,
for all subnetworks in the first level that contained at least one vi-
sual input and at least one motor command, the latter was taken
to be its absolute value. For example,L(1) = p(m2

t |ct, ct−1) ⇒
p(|m2

t ||ct, ct−1).
Viable subnetworks. The viable networks in the end of this pro-

cess were (Fig. 3):V (1)
1 = p(m1

t |p
1
t , p

1
t−1), V

(1)
2 = p(p1

t |m
1
t , p

1
t−1)

andV
(1)
3 = p(p1

t−1|p
1
t , m

1
t ) representing the inverse, forward and

postdiction internal models of the arm motor, respectively [29];
V

(1)
4 = p(m2

t |p
2
t , p

2
t−1), V

(1)
5 = p(p2

t |m
2
t , p

2
t−1) and V

(1)
6 =

p(p2
t−1|p

2
t , m

2
t ) representing the inverse, forward and postdiction IM

of the camera motor, respectively, and;V
(1)
7 = p(m2

t |ct, ct−1),
V

(1)
8 = p(ct|m

2
t , ct−1) and V

(1)
9 = p(ct−1|ct, m

2
t ) represent-

ing the inverse, forward and postdiction IM of the camera mo-
tor and camera image, respectively. Three more networks were vi-
able, but their corresponding prediction maps hold no information:
V

(1)
10 = p(ct−1|p

2
t , ct),V

(1)
11 = p(ct|p

2
t−1, ct−1) and V

(1)
12 =

p(p2
t−1|m

2
t , ct). We believe that further learning would have resulted

in their pruning.
The first six viable networks have been described intensively in

the literature [14, 21, 29]. For a 1 DOF constellation they are very
simple, whereas for more DOF there are known problems, mainly in
the inverse models [14, 21]. However, this is not the main topic of
the paper and thus we do not elaborate on it.

Of special interest isV (1)
7 = p(m2

t |ct, ct−1) (Fig. 2(c)); it re-
ceives the current image, the previous image and learns whether the
camera motor has moved. In a non-homogeneous visual environ-
ment, when the camera moves, most of the pixels’ colors change;
when the camera does not move, most of the pixels’ colors do not
change. Hence, this subnetwork represents anautonomously learned
visual change detector.

Figure 3 shows the learned mapping of the viable subnetworks
of the first level. As can be seen, the motor’s internal models are
(almost) linear mapping.V (1)

7 is the visual change detection: as de-
scribed above, the output was rescaled to be 1 for motion and -1 for
no motion. This shows that if two pixels are identical, the output is
-1, whereas if they are different, the output is 1, constituting a true
change detector. Notice thatV

(1)
8,9 are similar and represent the visual

prediction: if there is no motion (left side), the output pixel is iden-
tical to the input pixel; if there is motion (right side), nothing can be
said of the output pixel. Finally, the maps ofV

(1)
10−12 are almost flat,

representing no information or correlation.
Novel features. The nine viable networks of the first level hint to-

wards a more general concept of autonomous learning: active sens-
ing circuits [4, 28], whereby motor commands influence sensory in-
formation, enables autonomous learning of internal models of the

sensory-motor coupling. Thus, while one interpretation ofV
(1)
7 is

visual change detection, it is learned similarly toV
(1)
1,4 which are

“proper” inverse models [14, 21]. Hence, it can be used as a visualin-
verse model, or active vision [1, 23, 19]: given the current image and
a goal image, what is the proper motor command? Conversely,V

(1)
1,4

can be used as joint-angle change detectors: given the current and
previous angles, was the joint moved? The exhaustive construction
of all subnetworks brought these novel concepts to light: (i) There
is one-to-one mapping between inverse models and change detectors
and; (ii) only active sensing coupling enables autonomous learning
of internal models and change detectors.

5.1.2 Second level

Eqs. (1-3) result in||D(2)|| = 17 and ||L(2)|| = 1872. This was
computationally too expensive for the setup we have considered, so
made the following restrictions: (i) only the arm motor was con-
sidered,m1

t , p
1
t ; (ii) no sensory or motor delays were considered,

d1,2
m = d1,2,3

s = 0; (iii) only the arm motor internal models and
the visual change detection were taken,V

(1)
1−3,7 and; (iv) only subnet-

works that had at least one visual component were considered. This
resulted in a total of||L(2)|| = 72 subnetworks. While this is consid-
erably less than the exhaustive pool, it is still large enough to demon-
strate all the proposed concepts. All the subnetworks had two hidden
layers with ten neurons each, andβ = 5, α = 0.1, γ = 0.001. The
robot moved its arm motor randomly for 10,000 time steps, in which
concurrent learning and pruning was performed on all subnetworks
in parallel.

The second level of the hierarchy represents a higher level in the
visual pathway, one in which features are detected [15]. Hence,ct in
this level was set to be a 7x7 RGB pixel array. As with the previous
level, each time step all 7x7 arrays composing the image were pre-
sented to the subnetworks in a randomized permutation order. Sim-
ilarly, the number of the input/output layers’ neurons were enlarged
and the learning and pruning rates were rescaled. Since all the sub-
networks had at least one image component, the rescaled learning
rateβ was always much smaller than 1.

Viable subnetworks. Only five subnetworks were viable at the
end of the process (Fig. 4), namelyV

(2)
1−5 = p(V

(1)
7 |ct, K), where

K = {m1
t , p

1
t , V

(1)
1,2,3}. Three more subnetworks “survived” the

learning and pruning process, but held no information:V
(2)
6 =

p(p1
t |m

1
t , V

(1)
7 ), V

(2)
7 = p(p1

t |ct, V
(1)
1 ) andV

(2)
7 = p(p1

t |ct, V
(1)
3 ).

ExaminingV
(2)
1−5 reveals that in the implemented learning schedule,

i.e. only a moving arm, they are all similar; they learn the trans-
formation from image patches,ct, to moving objects in the visual
field V

(1)
7 . Since the only moving object in the training set was the

arm itself, they all representautonomous learningof visual self-
recognition, Fig. 2(d).

Figure 4 shows the execution output of the 8 viable subnetworks of
level two. As can be seen,V

(2)
1−5 are practically identical. WhileV (2)

6

seems to hold some information, the distinction between the arm and
background is extremely small.

Novel features. Other works have shown autonomous learning of
visual self-recognition [20, 17, 5], yet none have done so in a hi-
erarchical manner starting from raw sensory data. Rather, all have
used intensive pre-programmed image processing prior to learning.
Furthermore, while we have not used the fully exhaustive second-
level subnetwork pool, due to computational hardware limitations,
this mappingemergedas the only viable and functional mapping out
of 72 others.



(a) (b): V(2)
1

(c): V(2)
2

(d): V(2)
3

(e): V(2)
4

(f): V(2)
5

(g): V(2)
6

(h): V(2)
7

(i): V(2)
8

Figure 4. Execution map of the viable level 2 subnetworks.

5.1.3 Third level

Since we have shown the equivalence of the five viable second-
level subnetworks, we can augment the data set with only one, e.g.
V

(2)
1 . This still results in a large exhaustive pool of subnetworks,

so we made the same restrictions as in the second level. Further-
more, we have introduced a modification to the execution of sec-
ond level viable subnetworks whose output was a single-channel
image. This is usually due todetectionof visual objects and hence
its magnitude is not important, only its sign. We therefore changed:
output ∈ [−1, 1] ⇒ output ∈ {−1, 1}, by thresholding at0.
This only expedited the learning of the higher levels, and does not
change the results of the paper. For example, the execution output
V

(2)
5 = p(V

(1)
7 |ct, p

1
t ) was set to be the sign of the output neuron.

These alterations result in||L(3)|| = 63 subnetworks, Fig. 5 (see
Appendix). Again, this is a rather small pool, but can still demon-
strate the basic principles presented here. All the subnetworks had
two hidden layers with ten neurons each, with parametersβ =
0.01, α = 0.1. The robot moved its arm motor randomly for 100,000
time steps, in which only learning was performed on all subnetworks
in parallel. Since this is the last level of the hierarchy and the subnet-
works had numerous input neurons (see below), pruning proved to
be an inefficient mechanism for distilling viable networks. Hence we
employ a prediction error threshold,ethreshold = 0.1; subnetworks
whose average prediction error did not decline below it at the end of
the learning stage were deemedunreliable, Fig. 5.

The third and last level of the hierarchy represents the highest level
in the visual pathway, one that considers the entire field of view [6].
Hence,ct in this level was set to be the entire image and in contrary
to the previous two levels, a single presentation was done in each
time step. Furthermore, rescaling ofβ was not required.

Viable subnetworks. Twenty subnetworks ended up reliable,
V

(3)
1−20 (see Appendix). However, they have several things in com-

mon:V (2)
1 is always an input (and not an output), and the output con-

sists of arm parameters (not image, or change detection). From this
and further analysis, one can interpret the learned correlation: it is the
transformation between the visual location of the hand, viaV

(2)
1 , and

the current arm position. Hence, this constitutesautonomous learn-
ing of visual-to-arm coordinate transformation.

Novel features. Previous works have described algorithms for co-
ordinate transformations [22]. However, they employed intense im-
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Figure 5. Prediction error of all 63 subnetworks of level 3 (see Appendix).
Reliable networks are emphasized. Dashed black line delineate reliability

threshold.

age processing prior to learning. Furthermore, this is the first time,
to the best of our knowledge, that the same algorithm produces mo-
tion detection, visual self-recognition and visual-to-arm coordinate
transformation.

5.2 Reaching Network

We next wish to construct aclosed loopwiring between learned sub-
networks that begins with sensory information and ends up in a motor
command. Byclosed loopwe mean that there is no external goal or
task, but that the motion of the motors are determined by the wiring
itself. Hierarchical construction followed by pruning resulted in the
following viable and reliable subnetworks: nine networks from the
first level, five equivalent subnetworks from the second level and
twenty equivalent subnetworks from the third and last level.

We focus on the motion of the arm only, hence the subnetwork
at the end of the closed loop must have an output of an arm motor-
related parameter, Fig. 6. The arm’s inverse model,V

(1)
1 is the natural

subnetwork that obeys this requirement. However, some of the third
level subnetworks,V (3)

13−18 (see Appendix), have the inverse model
as their output and thus also obey that requirement.

The image-arm coordinate transformation subnetworks,V
(3)
1−12

(see Appendix) are the only non-trivial subnetworks that can serve
as an input to the arm’s inverse model. This is so because these sub-
networks have eitherp1

t or V
(1)
2 , which is the forward model of the

arm, as their output. This equivalent class transforms visual self-
recognition,V (2)

1 to the arm’s angle, regardless of the other input,
e.g.m1

t , ct. Hence, these are actually a1 7→ 1 subnetworks. How-
ever, since they are third-level subnetworks, they have an input ofthe
whole image, resulting in 4800 input neurons.

We focus on the arm inverse model. During execution, the inverse
model receives the current position of the arm and should receive a
goal position. However, since we are interested in a closed loop, the
goal should come from another subnetwork. The viable candidate
subnetworks areV (1)

2,3 andV
(3)
1−12, where the former group closes a

trivial loop of forward/inverse models of the same motor. The latter
group are equivalent and transform a visual image to an arm coor-
dinate, so for simplicity we chooseV (3)

1 = p(p1
t |V

(2)
1 , m1

t ). The
wiring of V

(3)
1 → V

(1)
1 results in motion towards a visual object. Fi-

nally,V (3)
1 receives asingle channelfull image as its input. Six viable
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V
(1)
7 → V

(3)
1 → V

(1)
1 .

subnetworks produce this output, namely,V
(2)
1−5 andV

(1)
7 . The for-

mer five are equivalent, representing the arm’s visual self-recognition
(Fig. 2(d)) and result in trivial motion of the arm towards itself.

The latter’s motion detection capabilities (Fig. 2(c)) close the loop:
(ct, ct−1) → V

(1)
7 → V

(3)
1 → V

(1)
1 . In words, two consecutive

images produce a change map; coordinate transformation transfers
the location of detected changes into the arm’s position; the arm’s
inverse model produces the correct arm motor command to reach
towards the moving object, Fig. 6.

As mentioned above,V (3)
13−18 can also be the final subnetworks of

the closed loop (see Appendix). Analyzing their input/output rela-
tions show that they are equivalent and can serve as a combination
of visual-to-arm coordinate transformationand inverse model. This
means that one can replace the wiringV

(1)
7 → V

(3)
1−12 → V

(1)
1 de-

scribed above withV (1)
7 → V

(3)
13−18. We have not done so in the

robot implementation in order to show that several subnetworks can
be executed and concurrently re-learned.

We wish to emphasize that the presented execution circuit is the
only functional non-trivial closed loop composed of viable and re-
liable subnetworks that operate the arm. The other possible wirings
that result in motion of the arm perform trivial motions, such as mov-
ing towards the current position of the arm, i.e. not moving. While
we have introduced learning schedule restrictions in the second and
third levels, the process has still demonstrated extreme convergence:
from a total of168+72+63 = 303 initial subnetworks, exuberance,
pruning and reliability reduced the pool to a mere9+5+20 = 34 vi-
able and reliable subnetworks, which can produce a singleemergent
functional closed loop, namely, reaching a moving target.

5.3 Concurrent Execution and Learning

Since all the components of the reaching network can be au-
tonomously learned, the network possesses a unique characteristic:
it can continuously and autonomously re-learn all its elements. We
have shown that the inputs to the viable subnetworks are different
in the learning and execution phases. Hence, during execution of
the reaching motion, re-learning requires another “pass” through the
learning network. Thus, for example, during concurrent learning, the

coordinate transformation subnetworkV
(3)
1 should receive its input

from the self-recognition subnetwork,V
(2)
1 , and not the motion de-

tection oneV (1)
7 , as in the execution phase. This requires the mainte-

nance and re-learning of subnetworks that do not actually contribute
to the reaching task, e.g.V

(2)
1 .
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Figure 7. Reaching a moving object with concurrent learning (see Supp.
Movie). (a) Horizontal position of moving object (black) andarm (gray) as a

function of time steps. (b) Percent change of motor (black) andcamera
(gray) parameters.

Furthermore, we have implemented a specific arm and camera mo-
tion schedule to improve learning during the learning phase: mo-
tion detection was learned quickly because the camera consecutively
moved and then rested; arm visual self-recognition and coordinate
transformation were learned when only the arm moved. This means
that during the reaching execution stage, some biases could be in-
troduced. For example, if motion detection were learned only when
thearmmoved, it would re-learn that only arm features contribute to
motion detection and would not average out all possible pixel com-
binations to produce a true motion detector. Hence, in the sequence
demonstrated in Fig. 7(a), motion detection was not re-learned, due
to the camera’s immobility. However, the rest of the components,
namely,V (1)

1 , V
(2)
1 and V

(3)
1 were learned concurrently with the

reaching execution.
In the testing of the entire reaching network, we have added

another LEGO Mindstorm motor that controlled a moving object,
Fig. 2(a,blue object;c). It was moved to a random position to the
left and then right of the image where it then made a sudden move,
Fig. 7(a, black). The reaching network was then executed and mon-
itored via the camera, Fig. 2(a,red hand;d). We have also introduced
gradual changes to the robot’s sensors and motors to ascertain its
concurrent execution and re-learning capabilities.

Figure 7(a) shows the horizontal location of the two detected en-
tities, namely, arm and object and nicely demonstrates how the arm
follows the movement of the object. The figure first shows initial cal-
ibration errors, corrected after 70 times steps (see Supp. Movie). It is
followed by an introduction of a slow change in the motor plant of
the arm, whose maximal power increased by20% and a degradation
of the red channel of the camera to80% of its value, Fig. 7(b). As
can be seen in Fig. 7(a), the reaching motion is again accurate after
the change due to the network’s concurrent re-learning capabilities.



6 Related Works

In [5] an information theoretic approach was taken in order to au-
tonomously learn what a robot can control. By using mutual infor-
mation and moving its own hand, the robot could discern its hands
and then its fingers. However, the model included image processing
in order to extract the relevant information measures.

Ref. [30] explores several models of learning how to reach, whose
main features are the learning of internal models, namely, forward
and inverse kinematics and dynamics of the arm. While the suggested
model autonomously learns these internal models by moving the arm,
it does not address the issue of arm self-recognition, but rather uses
intense image processing to acquire the external coordinates of the
arm and the objects it interacts with.

Another humanoid robot was used to autonomously learn the co-
ordinates transformation between the head and the arm [22]. This
was done by using a fixed gaze by which the head was turned to
keep the hand in the center of the image. Then the head and arm pro-
prioception angle information was used to autonomously learn the
coordinates transformation.

Work of the same group [20] has also implemented learning of the
self via periodic motions of the hand and finding the corresponding
image features. Furthermore, building saliency maps of the visual
image and interacting with the environment, enabled building object
models in the vicinity of the robot.

Building hierarchical learning networks that extract higher or-
der correlations in the data was also performed by several groups
[12, 25]. However, they have focused on image processing, while
the model presented here focuses more on the interaction between
the motorized action and sensors, both visual and proprioception.
Ref. [33] learns generalized value functions which indeed relate
states and actions, but does not perform an exhaustive search over
these possibilities. Another related model is that of Hierarchical Tem-
poral Memory [9], which learns temporal sensory information in dif-
ferent hierarchies, where the time-scales change with hierarchy level.
The model presented here focuses more on the sensory-motorcorre-
lations with the emphasis of creating a functional executable circuit
from the learned and viable subnetworks. This novel focus highlights
the relevance of active sensing [4, 28] to the autonomous learning
paradigm.

In the current implementation, we have used random motion in
order to learn the sensory-motor correlations. However, many works
have implemented active learning concepts to expedite such learning
(see [10] and references therein). More specifically, the concept of
intrinsic reward that originates from learning these transformation is
a promising avenue of research [24, 32, 11] and will be explored in
future work.

7 Discussion

A brain-inspired novel algorithm implementing the prevalent con-
cept of exuberance [13] was introduced: it starts by constructing
an exhaustive pool of subnetworks and then during learning prunes
away those that are presented with uncorrelated data sets. Repeat-
ing the procedure in a hierarchical manner results in a pool ofvi-
ableandreliable subnetworks that representall the correlations the
agent can autonomously learn. These serve as an alphabet to con-
struct executable circuits that perform specific tasks, with concurrent
autonomous learning of all composing elements.

The complexity analysis presented above can hint to the underly-
ing cause of exuberance in the brain [13]. Initially, the organism does

not know which sensory information correlates with which motor
command. Hence, starting with an exhaustive connectivity and then
pruning away the non-functional elements in a hierarchical manner
results in reduced hierarchical complexity.

We have focused on2 7→ 1 correlations and not all-to-all corre-
lations, as in self-organizing maps [27], in order to show the emer-
gence of specific functional networks, e.g. motion detection and self-
recognition. Had we constructed the first level network to have all the
inputs and one output, e.g. the camera motor commandp(m2

t |D
(1)),

it would not have learned motion detectionp(m2
t |ct, ct−1), since the

camera motor inverse modelp(m2
t |p

2
t , p

2
t−1) would have better pre-

dicted the motor command. One may thus conclude that dividing the
input information to subsets is beneficial for constructing a truly ex-
haustive map of learnable transformations.

Furthermore, the architecture presented here used a large initial
network and then utilized pruning. One may have opted for starting
with a small network and increasing it via, e.g. cascade correlation
networks [7, 16, 31]. However, since there is evidence for death of
inactive neurons, but less of increase in the number of neurons in the
brain, we believe that pruning connections and non-active neurons is
more suitable to our brain-inspired framework than adding neurons
to a network. A thorough comparison of the performance of the two
options is beyond the scope of this paper.

The proposed model and its implementation give rise to several
interesting aspects of autonomous learning in general. From a neuro-
biological perspective, the specific suggested architecture for learn-
ing how to reach has a novel prediction that suggests connectivities
that are mandatory in order to achieve learning, e.g. an efference
copy of the eye muscles must reach the first motion detection station,
which is as low as the retina. However, it seems unlikely that basic
change detection is a learned quality of the nervous system, since
many (if not all) low-level neurons have that characteristic. How can
this be resolved? First, the question we ask is fundamental: what can
be learned, expanding beyond what indeed is learned in biological
systems. Second, evolution may also play a significant role, i.e. it is
possible that lower species have a learned motion detection archi-
tecture, but higher ones developed a genetically-encoded mechanism
to achieve the same goal. This has the added advantage of requiring
less time to manifest, meaning an organism with a “hard-wired” mo-
tion detector will detect motion earlier in development than one that
has to learn it. Furthermore, it enables the learning neuronal system
to focus on more complicated sensory-motor correlations, i.e. higher
loops. Third, the biological substrates that living organisms are made
of have some inherent qualities, and change detection, or other sim-
ple transformations, may be one of them, thus eliminating the need
to learn it during development.

Another important issue is what determines the overall execution
connectivity of the viable subnetworks. A possible biological reason-
ing is that initially all the subnetworks are connected to each other
and only those that serve some purpose and achieve a specific (re-
warding) goal survive in development. Hence, one can picture a fully
connected network in which all available information serve as both
input and output to many correlation-learning neuronal networks.
These networks are then only way-stations to other neuronal net-
works that serve as the second tier in the hierarchy and so on. Se-
lecting which network will be activated and which will control the
muscles at any given moment probably involves a rewarding mecha-
nism which is beyond the scope of the present work.

The exhaustive constructive algorithm has also surfaced a novel
concept relating active sensing [4, 28] and autonomous learning: in
the first level of the hierarchy,onlyactive sensing sensory-motor cou-



plings produce viable subnetworks and those represent internal mod-
els. Specifically, the inverse model subnetworks can be used in two
complementary ways: (i) determining the proper motor command to
achieve a specific sensory goal and; (ii) detecting changes in the sen-
sory information.

Finally, the proposed implementation of the exhaustive architec-
ture is just the first step towards a more complex network with many
more capabilities. One can think of new subnetworks in all levels of
the hierarchy: a network that learns to map a visual receptive field to
the specific directional motion of the eye can learn orientation lines
and edge detection; using two cameras, one can autonomously learn
a stereoscopic coordinates transformation; head, torso and leg move-
ments can also be autonomously learned and add more flavor to a
much richer network.

To conclude, we have developed a methodology of an exhaus-
tive hierarchical construction of autonomously learning agents. We
have shown that by implementing exuberance and pruning, only vi-
able and reliable networks that actually encode correlations in the
sensory-motor information survive. Those augment higher levels’
available data to introduce more complex subnetworks. We have im-
plemented it on a robot and showed that three levels of the hierarchy
can produce a completely autonomously learned reaching arm, that is
robust to noise due to its concurrent execution and re-learning capa-
bilities. We envision that this model can be implemented on virtually
any robotic agent and can augment existing pre-programed algorith-
mic controls.

Appendix: Level 3 Subnetworks
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(6)

The twenty viable subnetworks can be grouped into three equiva-
lent classes:

1. Subnetworks with arm angle-related output:V (3)
1−12 =

L
(3)
14,24,34,40,46,52,7,18,28,38,44,57. Notice that V

(1)
2 is the for-

ward model of the arm motor and during training is completely
equivalent top1

t .
2. Subnetworks with arm motor-related output:V (3)

13−18 =

L
(3)
5,16,26,43,49,55. Notice thatV (1)

1 which appears as an output in
these subnetworks is the inverse model of the arm. During training
it is completely equivalent tom1

t .
3. Subnetworks with the arm’s previous angle output:V

(3)
19−20 =

L
(3)
17,37. Notice thatV (1)

3 which appears the output in these sub-
networks is the postdiction model of the arm and during training
is completely equivalent top1

t−1.
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