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Abstract Animals explore novel environments in a cau-
tious manner, exhibiting alternation between curiosity-
driven behavior and retreats. We present a detailed formal
framework for exploration behavior, which generates behav-
ior that maintains a constant level of novelty. Similar to
other types of complex behaviors, the resulting exploratory
behavior is composed of exploration motor primitives.
These primitives can be learned during a developmental
period, wherein the agent experiences repeated interactions
with environments that share common traits, thus allowing
transference of motor learning to novel environments. The
emergence of exploration motor primitives is the result of
reinforcement learning in which information gain serves as
intrinsic reward. Furthermore, actors and critics are local
and ego-centric, thus enabling transference to other environ-
ments. Novelty control, i.e. the principle which governs the
maintenance of constant novelty, is implemented by a cen-
tral action-selection mechanism, which switches between
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the emergent exploration primitives and a retreat policy,
based on the currently-experienced novelty. The framework
has only a few parameters, wherein time-scales, learning
rates and thresholds are adaptive, and can thus be easily
applied to many scenarios. We implement it by modeling the
rodent’s whisking system and show that it can explain char-
acteristic observed behaviors. A detailed discussion of the
framework’s merits and flaws, as compared to other related
models, concludes the paper.
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1 Introduction

Animals and humans interact and explore their surround-
ing environment by moving. They exhibit complex behav-
ioral patterns motivated by both curiosity and fear of
novel sensations (Tinbergen 1951; Barnett 1958; Misslin
and Cigrang 1986; File 2001; Elliot 2006; Hughes 2007;
Fonio et al. 2009). The goal of the proposed formal
framework is to capture the intricate interaction between
the curiosity drive and fear in exploring animals (Barnett
1958; Misslin and Cigrang 1986; Fonio et al. 2009). This
neurophysiologically-plausible formal framework aims at
maintaining a constant level of novelty and is composed
of discrete, learnable exploration motor primitives. The
framework builds upon and extends the model presented in
(Gordon and Ahissar 2012) and is in contrast to previous
models that suggested maximizing or minimizing novelty
(in its many forms, see Little and Sommer 2013).
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We present a framework that describes the emergence of
these exploration motor primitives from intrinsic motivation
principles and their control strategy, Fig. 1. The primi-
tives are local policies, learned through intrinsic reward
reinforcement learning (RL), and are aimed at learning spe-
cific sensory-motor correlations. Due to their unique local
nature, they are transferable to novel environments that
share similar traits (Konidaris and Barto 2007). The explo-
ration primitives emerge in a sequence, where each new
primitive focuses on a different novel aspect of the agent-
environment interaction. The motor strategy is composed of
switching between these exploration primitives and a retreat
primitive, where the latter is an adaptive optimal behav-
ior aimed at reducing novelty in a safe manner (Moldovan
and Abbeel 2012). The retreat policy exemplifies the notion
of fear, yet instead of incorporating a new intrinsic source
of reward/punishment, we link it to the accumulation of
too much novelty, i.e. neophobia. In this formulation, a
balance between the curiosity drive (neophilia) and fear
(neophobia) is maintained by a single variable, namely,
novelty. The emerged complex behavior is a structured
alternation between exploration and retreats, in accordance
with approach-avoidance (Tinbergen 1951; Barnett 1958;
Misslin and Cigrang 1986; File 2001; Elliot 2006; Hughes
2007; Fonio et al. 2009).

Fig. 1 Framework architecture. The agent perceives the world by
attempting to predict its sensations. Errors in prediction result in nov-
elty, which is managed via a balance between neophobia, i.e. too much
novelty initiates retreat, and neophilia, i.e. too little novelty activates
emergent exploration motor primitives

2 Related work

Animals employ different motor strategies that depend on
the specific context and desired goal. It was shown, how-
ever, that there are fundamental concepts that guide these
motor strategies. Complex movements were shown to be
composed of motor building blocks (Richardson and Flash
2002; Flash and Hochner 2005) which can be combined
using specific syntactic rules. However, most of the ana-
lyzed motions were concerned with motor-guided motor
control, i.e. the objective was motion, such as reaching or
grasping (Flash and Handzel 2007). A different type of
motor strategy appears when the goal is sensation, also
known as active sensing (Szwed et al. 2003; Kleinfeld et al.
2006; Gordon et al. 2011).

In this contribution we are concerned with motor control
learned via reinforcement learning (RL) (Kaelbling et al.
1996; Schultz et al. 1997; Fox et al. 2008), wherein the
goal is to maximize future accumulated rewards, attained by
adapting policies. Building a complex motor strategy that
maximizes rewards has been investigated in the context of
Hierarchical RL (Barto and Mahadevan 2003) and in the
options setup (Sutton et al. 1999; Stolle and Precup 2002),
where the task is divided to sub-tasks, each with its optimal
policy.

However, in most experimental setups and robotics sce-
narios, the task, goal or reward are defined extrinsically,
e.g., the experimenter decides the task and grants rewards
according to its performance. In scenarios considered here,
namely, exploration of novel environments, there is no
external reward or a pre-defined goal-state, but rather there
is an intrinsic motivation to learn about the environment in
the most efficient manner. Such a curious agent, whether
an animal, human or robot, interacts with its environment
in order to learn cause and effect relations. The formaliza-
tion of curiosity in this context is the notion of rewarding
novelty, or surprise, such that actions that increase the
information gain of the agent are rewarded and hence
become more likely to recur. The concept of rewarding
novelty is also known as theory of creativity (Schmidhu-
ber 2010), and is widely used in developmental robotics
(Weng 2004; Oudeyer et al. 2007). Furthermore, sev-
eral information-theoretic approaches to minimize sur-
prise (Friston 2010), maximize novelty (Tishby and Polani
2011; Little and Sommer 2013) or maximize controllability
(Polani 2009) of the agent have been recently developed.

The interaction between the curiosity drive and other pri-
mary rewards was less analyzed (Vergassola et al. 2007;
Tishby and Polani 2011). An information-theoretic perspec-
tive in (Tishby and Polani 2011) attempts to relate external
reward and the information required to acquire it. It derives
an “info-Bellman” equation where information serves as a
symmetric counter-part to rewards from external sources.
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However, to the best of our knowledge, fear and anxiety
have not been incorporated into these types of models, even
though they are ubiquitous in nature (Barnett 1958; Misslin
and Cigrang 1986; File 2001; Whishaw et al. 2006; Hughes
2007).

One active sensing system often studied is the rodent’s
whisker system (Kleinfeld et al. 2006). It was recently
shown that initial contacts of rodents’ whiskers with novel
objects were immediately followed by rapid retraction
(Mitchinson et al. 2007). Furthermore, repeated contacts
with the same object showed increased complexity of con-
tact, termed “touch-induced-pump” (Deutsch et al. 2012).
We hypothesize that the aforementioned behaviors are com-
posed of exploration motor primitives, interleaved with
retreat primitives. We model this system using the proposed
framework and analyze the emergent behavior in view of the
aforementioned observed behaviors.

3 Reinforcement learning background

In the framework presented below, we use the reinforcement
learning (RL) paradigm, more specifically, the incremen-
tal Natural Actor Critic (iNAC) algorithm (Bhatnagar et al.
2007), which is an efficient actor-critic-based reinforce-
ment learning algorithm (see (Gordon and Ahissar 2012)
for more details). The agent selects an action, at , at each
time t using a randomized stationary policy, designated as
the actor: π(a|s) = Pr(at = a|st = s; λt), where λt
are the actor parameters to be tuned. The Natural Actor-
Critic algorithm uses the compatible functions, defined as
ψ(st , at ) = ∇λπ(at |st ), i.e. a set of functions that repre-
sents how the actor depends on each tuning parameter, λ.
The critic, V̂ π (s; νt ), is the approximation of the true value
function, V π(s), which measures the expected future accu-
mulated rewards for an initial state s and behaving according
to the policy π . The critic thus attempts to learn this value
function by tuning the parameters νt using the following
set of functions φ(st ) = ∇νV̂

π (s; νt ), which similar to the
compatible functions, represent how the critic depends on
each tuning parameter.

Using the critic, the reinforcement learning algorithm
computes the temporal difference (TD) error (Sutton 1988),
here taken to be:

δt = rt − Ĵt+1 + V̂ π (st ; νt )− V̂ π (st+1; νt ), (1)

where Ĵt is the estimated average reward. The TD-error, δt ,
represents the error in the critic’s prediction of the value
function, compared to the actual received rewards, normal-
ized to the estimated average reward. In other words, the
TD-error measures the difference between what the critic
“thought” the reward should be (V̂ π (st+1)−V̂ π (st )), i.e. the

change in value due to change in states; and the actual (nor-
malized) reward (rt − Ĵt+1). If the critic approximates the
value function well, it should accurately predict the reward
and the TD-error should be small; conversely, if the critic
does not differentiate values at all (V̂ π (s) =V̂ π ∀s), the
TD-error is proportional to the (normalized) reward. The
TD-error is thus used to update the tuning parameters of the
critic in order to better approximate the value function; it
is also used to update the actor’s tuning parameters to have
a better policy that will maximize the future accumulated
rewards.

Our version of the iNAC algorithm thus have several
parameters that are updated. The update rules are sum-
marized below (for more details, see Gordon and Ahissar
2012):

Ĵt+1 = (1 − ξ)Ĵt + ξrt (2)

νt+1 = νt + αCδtφ(st ) (3)

wt+1 =
[
I − αCψ(st , at )ψ(st , at)

T
]
wt

+αCδtψ(st , at ) (4)

λt+1 = λt + αAwt+1 (5)

where ξ is the average reward update rate, wt are the advan-
tage parameters, αC, αA are the learning rates of the critic
and actor, respectively.

4 Formal framework of exploration behavior

The framework presented here is composed of three main
components: (i) a novelty-seeking component, composed
of a set of hierarchical curiosity loops, whereby the agent
converges to behaviors that optimize learning; (ii) a novelty-
aversive component composed of a single motor-primitive
dubbed retreat and; (iii) a novelty management unit that
controls the transition between these motor primitives. We
first present the basic curiosity loop, which is composed
of the exploration perceiver and an actor-critic module. We
then describe the hierarchical buildup of curiosity loops.
The introduction of the retreat motor-primitive follows;
this behavior, which exemplifies the notion of neophobia,
aims at reducing novelty by exploiting information already
learned in order to return to the most familiar base-state
of the system. We then present the principles that govern
the novelty management unit and the transition between the
loops, namely, “novelty seeking” that determines advance-
ment to higher loops and “novelty avoidance” that deter-
mines the transition to the retreat policy. A summary of the
framework parameters is followed by a description of the
environmental settings.
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4.1 Novelty-seeking: the basic curiosity loop

Each curiosity loop attempts to find the policy, or Actor,
that optimizes learning the sensory-motor correlations of
the animal’s interaction with its environment, represented
by the perceiver module. The curiosity loops are thus con-
structed from perceivers, critics and actors.

Exploration perceiver The perceiver attempts to correctly
predict the future sensory information given the current
sensory state and the applied actions or motor commands;
this is also known as the forward model (Ouyang et al.
2006; Behera et al. 1995; Shadmehr and Krakauer 2008;
Lalazar and Vaadia 2008; Kawato 1999). The perceiver is
thus formulated as

L(s′|s, a) = Pr(st+1 = s′|st = s, at = a) (6)

where boldface letters denote vectors; st is the sensory state
(vector) at time t; at is the action (vector) performed at time
t; and st+1 is the predicted next sensory state (vector).

The state space can be composed of all sensory informa-
tion, either proprioceptive regarding the agent’s own body,
its location in space or its input from its sensory organs. The
action space represents motor commands to muscles, move-
ment in an arena, etc. For brevity, we define the perceiver
as:

P(s′) ≡ L(s′|s, a) (7)

i.e. the conditional probability function of the next sensory
state, s′, given the current state and action. At each time step,
a state is observed by the agent, denoted by o, which, due
to noise, may be different from the actual state, s. The per-
ceiver probability function is updated each time step by this
observation:

Pt+1(s′|o) = L(s′|s, a, o)

= Pr(st+1 = s′|st = s, at = a, ot+1 = o) (8)

In other words, given the new observed sensory input o =
ot+1, the probability function of all possible sensory inputs
s are updated via Bayes theorem:

Pt+1(s′|o) = Pt(s′)
q(o|s′)∑

k Pt(k)q(o|k) (9)

where q(o|k) defines the probability that given the true
(actual) state k, a specific state o will be observed. This
probability represents the noise in the sensory system, i.e.
how stochastic the actual state becomes as it is observed by
the agent. The initial perceiver, P0(s′), i.e. the perceiver in
the first time step t = 0, is the prior the agent has of its
sensory-motor correlations. It is usually assumed to be com-
pletely random, i.e. the probabilities for each next sensory
state are equal and do not depend on the currently observed
states.

Information gain as intrinsic reward By performing a
sequence of actions and receiving sensory information, the
perceiver updates its prediction probability according to
Eq. (9). The change in the perceiver can be measured using
the Kullback-Leibler divergence, DKL(Pt+1||Pt), which is
a known measure for the amount of useful information, or
information gain, of the new observed state:

DKL(Pt+1(s′|o)||Pt(s′)) =
∑

s′
Pt+1(s′|o) log

(
Pt+1(s′|o)
Pt (s′)

)

(10)

In other words, upon performing action a a new observa-
tion, o is obtained resulting in an update of the perceiver;
this update’s intrinsic reward is measured by the informa-
tion gain. The motivation of using the information gain
is that one assumes that the new updated perceiver more
closely resembles the true sensory-motor correlations; it
then follows from the definition of the KL–divergence, that
it actually measures the number of extra bits required to
describe these correlations using the previous perceiver,
compared to using the new updated perceiver. In other
words, it costs more bits to “code the world” using the pre-
vious (not-updated) perceiver; the new (updated) perceiver
is more optimal in coding the world and the KL–divergence
measures by how much it is so; it measures the gained infor-
mation due to the update. This information-gain is then used
as an intrinsic-reward for reinforcement learning.

The RL paradigm requires a reward function. In the
curiosity loop, the reward is intrinsic, i.e. it is not supplied as
an external function (Barto et al. 2004; Weng 2004; Oudeyer
et al. 2007; Schmidhuber 2010), (Fig. 2). As reward, we
have used the information gain due to the perceiver updates,
measured by the KL–divergence, Eq. (10), such that the
loop learns from its (corrected) mistakes. In other words,
the learning process is proportional to the information gain,
i.e. the larger the gain, the more the agent has learned about
its environment. Thus, by rewarding larger gains, that come
from larger updates due to larger (corrected) mistakes, the
behavior is encouraged to seek places it does not know
(Gordon and Ahissar 2012).

Actor-Critic module An important and novel feature in our
actor-critic design is the fact that we require the critic and
the actor to be local, i.e to be independent of size and shape
of the environment and the exact location of the agent within
it. The local nature of the actor-critic module enables two
things: (i) encountering a novel environment with differ-
ent size and shape does not require development of new
motor primitives (actors), but rather they are transferable,
making their use ubiquitous (Konidaris and Barto 2007;
Frommberger and Wolter 2010) and; (ii) the motor primi-
tives are insensitive to discretization of the state and action
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Fig. 2 The basic curiosity loop. st , st+1, ŝt+1 and at are the current
state, next state, predicted next state and current action, respec-
tively. The perceiver is represented by the next-state probability
function Pt(st+1) and is updated using Bayes update, Eq. (9). The
change in the perceiver, measured by the Kullback-Leibler divergence,

DKL(Pt+1||Pt ) (Eq. (10)), is used as an intrinsic reward for an actor-
critic architecture. The Critic approximates the value of each state,
ˆV (s) and calculates the the TD-error δt , Eq. (1), which is used to

update the Critic and Actor. The Actor, represented by a stochastic
policy, π(at |st ), determines the action to be performed

spaces, but rather represent a qualitative behavior that does
not change with different discretization processes.

Hence, the critic and actor do not depend on the entire
state-space, but rather depend only on local aspects that
are invariant to translation, rotation and discretization. We
call these critics and actors “invariant”, to distinguish them
from other possible critics and actors that can depend on the
entire state- and action-spaces. We thus separate the state,
st , to its invariant part, denoted by s̃t and to its complemen-
tary subspace, denoted by št . For example, in a scenario in
which a rodent move its whiskers and touches objects, the
actions are determined solely ont he basis of the sensory
information of detected contact, a binary local state-space,
and not on the angle of the whisker, whose discretization
and extent may change over time or between environments.
Thus, the same invariant actor, or motor primitive, can be
used in different-sized whiskers without any modifications,
in contrast to coordinate-dependent actors which must be
re-learned in every new whisker configuration.

Furthermore, we require the actors to be ego-centric, i.e.
to have an action-space that does not depend on global
features. For example, moving in an arena should be depen-
dent on actions such as forward/backward/left/right and
not north/west/south/east. This requirement stems from the
same principle of learning transference, i.e. the actors
should be applicable to a variety of scenarios in order to be
called “exploration motor primitives”.

4.2 Hierarchical curiosity loops

The curiosity-loop algorithm starts with a random actor,
which gradually converges into a motor primitive. How-
ever, since the actor is invariant, i.e. the actions depend only
on the invariant subspace of the sensor-space, there is no

guarantee that the perceiver, which includes the entire sen-
sor space, succeeds in mapping the entire exploration space.
It is more probable that only a single feature or aspect is
learned while implementing the converged invariant actor.

In order to learn other aspects of the environment, a
higher level curiosity loop is introduced, in which a new
critic/actor pair is updated, until it too converges. Since the
new loop’s actor starts after the previous level’s actor was
already acted upon, the perceiver has changed from its initial
prior and already contains the learned feature of the envi-
ronment; this updated perceiver now serves as the “prior”
during the behavior of the new loop. The new actor will
converge to a behavior that learns new features, since the
previous features are no longer novel and thus not reward-
ing. This process of adding new curiosity loops can be
repeated, where each level’s converged actor represents dif-
ferent motor primitives, each optimal for learning specific
features in the environment (Fig. 3).

The rationale behind this hierarchical buildup of actor-
critic-perceiver is that initially the most rewarding, i.e.
novel, feature is learned by the converged actor. However,
since the actor depends only on partial (invariant) sensors
information, continuing acting upon it will not necessarily
induce learning of other features. Thus, switching to a new
curiosity loop produces an actor that maximizes learning the
next most rewarding feature of the environment. The hier-
archy can be extended recursively, until the perceiver has
completely mapped the environment, producing no more
rewards.

Formally, each level of the hierarchy, l = 1, . . . , NH is
described by a critic V̂ l(s̃) and an actor πl(a|s̃), whereas
there is a single perceiver for all loops, L = p(st+1|st , at ).
The latter is updated at every time step, no matter which
motor primitive is currently active. Hence, “going up” the
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hierarchy teaches the same perceiver new features of the
environment. It is important to note that only the active
loop’s parameters are updated at time step t , thus realiz-
ing an on-policy updating process, as opposed to off-policy
(Precup et al. 2001; Wawrzynski and Pacut 2004), due to a
different reward function for each level.

4.3 Novelty-aversive component: retreat policy

The retreat motor primitive is based on the assumption that
the agent always starts from a base-state, with which it is most
familiar and which contains no novelty (Bahar et al.
2004)(Fig. 3). For example, in a rodent’s whisking scenario
the base-state is the resting-angle of the whisker, considered
to be the fully retracted angle. The retreat actor moves the
agent to the base-state, through a route of least novelty, thus
ensuring its reduction.

The retreat actor is deterministic and is implemented in
the following way. Using the current perceiver, Pt , it finds
the next action that will bring it closer to the base-state
with the highest certainty, i.e. that the probability of a state-
transition there is the highest. Hence, the retreat policy is
given by:

π0(a|š) =

⎧⎪⎪⎨
⎪⎪⎩

1 a = argmina′
[
||š′ − šbase||

× (
1 − Pt (š′|š, a′)

) ]

0 otherwise

(11)

In other words, it looks for a neighboring state, that it
can reach with one action, which can be reached with
certainty, e.g. no intervening obstacles, that reduces the dis-
tance between the current position and the base-state. In
addition, it remembers the followed path to the base-state
and disregards actions that lead to a repeated trajectory, i.e.
it avoids circular paths. If the actor is continuously active,
the agent will follow the most certain path to the base-state.

4.4 Novelty controller

Novelty is represented in the framework by the informa-
tion gain, which also serves as the reward. The novelty
management unit determines the transition between the
curiosity-driven motor primitives and the retreat actor by
managing novelty inputs: whenever novelty is too high, the
retreat primitive is switched on; if novelty is too low, the
next level loop is invoked (Fig. 3).

Formally, the probability of the agent to start returning to
base is given by

pl
retreat(rt ) = ψ

(
(rt − (Ĵ l

t + r̃ l ))/r̃ l
)
, (12)

where rt is the current reward, Ĵ l
t is the current loop’s

average reward, r̃ is the novelty-transition sensitivity, and

ψ(x) = 1/
(
1 + e−x

)
is a sigmoid function. This transition

means that as the reward exceeds the current estimation of
the average reward, there is a greater probability for a tran-
sition to the the retreat primitive. In other words, whenever
novelty is significantly greater than the expected (average)
novelty, the agent returns to base, where the difference
should be greater than r̃ l in order to reduce the effects of
reward-related noise. This transition entails neophobia, i.e.
the novelty-averse reaction of the agent, in contrast to the
curiosity drive.

Whenever the currently active loop no longer produces
novelty, the novelty management unit switches to a higher
level loop in order to increase novelty input. The probability
for this advance to a higher loop is given by:

pl
adv(τ

l) = ψ
(
(τ l − τ̂ l )/τ̃ l

)
, (13)

where τ l is the accumulated time in which loop l has
been active, τ̂ l is the advancement threshold and τ̃ l is the
advancement sensitivity. τ l is accumulated from the first
time-step loop l has become active and is reset whenever
it becomes inactive, i.e. whenever there is a transition to
another loop or motor primitive. The advance is preceded
by a return to base, so that the higher loop is active during
the next new entry (see below). This ensures that all loops
have a common starting point and learn different features of
the environment due to their distinguishing novelty-related
aspects and not due to sporadic initial exploration state.

Taking Eqs. (12)–(13) together means that the agent per-
forms the transition to a higher loop when it moved τ̂ l

time steps without receiving a higher-than-expected reward.
This can be understood from the fact that if at one point
the reward exceeded the estimated average reward, it would
have returned to base; hence only if τ̂ l time-steps it received
less than Ĵ l , it performs the transition to a higher loop. τ̂ l

also gives indication on the minimal timescale of environ-
mental change dynamics, since any change occurring on a
shorter timescale will cause the system to be “stuck” in one
curiosity loop and not be able to continue to other novel
features of the environment.

Loops’ timescales Each curiosity loop has its own adaptive
timescale, T l . The timescale influences several processes
within and between loops: (i) The average reward temporal
window is set such that 1/ξ l = T l , i.e. Ĵt is calculated over
a period of T l time-steps; (ii) The critic and actor learning
rates are set such that α(C,A),l = 0.1/T l , i.e. each AC-
module has its own learning rate; (iii) Advance time is equal
to the loop’s timescale, τ̂ l = T l , i.e. a low-level curiosity
loop advances to a higher one after T l time-steps with no
novelty.

The timescale is an adaptive parameter such that it
accommodates different agent-environment interactions: an
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Fig. 3 Hierarchical curiosity
loop architecture. A single
perceiver calculates the
information gain, that goes to
the novelty management unit as
intrinsic reward. The novelty
management unit switches
probabilistically between the
curiosity loops and the retreat
primitive according to this
reward: the greater the reward is
from the expected (average)
reward, which is updated in each
exploration primitive’s critic, the
greater the probability the retreat
primitive becomes active (dotted
arrows); the longer the time no
novelty is from the current loop’s
time-scale, which is updated in
each exploration primitive’s
critic, the greater the probability
the next curiosity loop becomes
active (dashed arrows)

enriched interaction may necessitate more exploration time
for certain loops and less for others; conversely, a curiosity
loop active in a deprived environment may sometime require
a longer duration until it encounters the first novel feature.
Thus, the time-scale is updated according to the following
dynamics:

T l
t+1 = max

(
T l
t + αT δτ l,T l (2�(rt − rt−1)− 1) , T l−1

t

)

(14)

where αT is the timescale update rate, δτ l,T l is Kronecker’s
delta and �(·) is the Heaviside step-function. Eq. (14)
reflects the following heuristics: at time τ l = T l , i.e. when
loop l has been active for a duration that is equal to its
timescale, if the current reward is greater than the previous

reward, increase the timescale; otherwise decrease it. Fur-
thermore, loop’s l timescale cannot be below the previous
level’s timescale. The logic behind these principles is the
following: if the loop has been active for T l

t time-steps and
still receives large rewards, then there is more to discover,
and the timescale increases; on the other hand, if it has been
active long enough and rewards are diminishing, then the
loop should be less active and reduces its own timescale.
Moreover, we assume that the hierarchical nature of the
curiosity loop demands that the timescales increase with
higher loops, as each loop explores a higher dimensionality
of the exploration space, thus requiring longer activation
times to complete the exploration.

The AC-module learning rates depend on the loop time-
scale and are hence also adaptive. The rationale is that
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the AC-modules should average over many environments,
i.e. the behavior that emerges should be applicable to a
wide range of environments. Hence, the change of the AC-
module parameters should be slower than encountering a
single environment. Each level encounters a single environ-
ment on average T l time-steps; hence fulfilling the require-
ments for the learning rates amount to α(C,A),lT l << 1. We
thus take the learning rates to be α(C,A),l = 0.1/T l , which
both fulfills the upper boundary for averaging out environ-
ments and is not too small to have too slow convergence.

4.5 Framework parameters

While it appears at first glance that the framework has many
parameters, most are linked and adaptive, such that there
remain only few free parameters. The parameters of the
framework are partitioned to two groups, namely, curios-
ity loop parameters and novelty management parameters,
Table 1. The curiosity loop parameters are: (i) learning and
update rates of the actor, critic and timescale, α(C,A,T ),l ,
which are set to be equal α(C,A,T ),l = αl , where αl =
0.1/T l is the adaptive loop-dependent general learning
rate; (ii) average-reward update rate, which depends on the
timescale, ξ l = 1/T l .

The management parameters include: (i) novelty reduc-
tion parameters, namely, r̃ l the novelty sensitivity, which
determines the amount of stochasticity in the exploration-
to-retreat transition; (ii) advancement parameters, namely,
τ̂ l , τ̃ l , the advancement threshold and sensitivity, where
the latter determines the stochasticity of the advancement
transition and the former is adaptive and given by τ̂ l = T l .

The two loop-specific parameters, ξ l and τ̂ l dictate a
timescale for each loop; the former dictates the running
average window of the rewards and the latter the no-novelty
time before advancement. We have set τ̂ l = 1/ξ l = T l

for all loops, such that each loop has a single adaptive

Table 1 Framework parameters

Symbol Parameter Value Comment

T l Loop timescale Adaptive

ξ l Average-reward update rate 1/T l

τ̂ l Advancement threshold T l

αl Loop learning rate 0.1/T l

αC Critic learning rate αl

αA Actor learning rate αl

αT Time-scale update rate αl

r̃ l Novelty sensitivity Transition noise

τ̃ l Advancement sensitivity Transition noise

timescale, Eq. (14). This means that if by the time the
average reward has been calculated, there was no higher-
than-expected reward, the next loop should be activated. In
other words, advancement occurs only if the rewards are
monotonically decreasing for T l time-steps.

To summarize, all learning rates are adaptive and equal
to αl . Furthermore, sensitivities parameters, r̃ l , τ̃ l which
control the noise in the transition between primitives are
set a-priori, for example r̃ l , τ̃ l = 0.01 represent determin-
istic transitions. Hence, they are not free parameters that
are fitted to the data. All time-scales are adaptive, mean-
ing their converged values do not depend on their initial
arbitrary value. Any instantiation of our framework that
models a specific environment and modality, e.g. whisking
or locomotion systems, may contain model-specific param-
eters, such as sensory uncertainty and perceiver prior. These
can be thoroughly analyzed a-priori, thus describing the
possible repertoire of emergent behaviors.

4.6 Exploration sessions

Exploration sessions start from the base state and are
divided to entries and excursions. A new excursion is char-
acterized by reseting the perceiver and a randomization of
the environment. It signifies exploration of a new envi-
ronment, which can be of variable configuration, and thus
requires a reseting of the perceiver, since it can no longer
comply with the different size, shape or other environmental
parameters. A reminder: the perceiver is not invariant, i.e.
it depends on the entire state-space and thus must be reset
when the state-space changes. The first active actor at each
new excursion is the first level’s actor, π1.

A new entry is characterized by the same environment as
the previous entry, i.e. the environmental parameters do not
change. Hence, the perceiver is not reset, but rather contin-
uously updated during exploration. The active actor at the
beginning of a new entry is set to be the last actor prior
to the retreat, πllast , in order to maintain continuation of
order-of-loops execution.

A new excursion, i.e. exploration of a new environment,
begins only after the last loop has passed its advancement
threshold, i.e. whenever all the loops have not acquired new
information about the current environment. The introduc-
tion of new environments is not part of the internal curiosity
model, but rather represents the encounter of the agent with
a changing world. It is an external imposition, and is set
to make exploration policies, i.e. motor primitives, con-
verge to more robust behaviors that generalize over many
environments.

An example exploratory excursion The first actor in an
excursion is always the first-level actor, π1(a|s). It explores
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the environment and switches to the retreat primitive when-
ever it receives more-than-expected reward. After reaching
the base-state, a new entry begins with the same first loop’s
actor. Only after it has learned the most rewarding feature of
the environment, and has received no “surprising” rewards,
it advances to the next loop. The agent returns to the
base-state and starts a new entry with the higher loop’s actor.
The new active loop explores with the same perceiver as
the first loop (the agent has only one perceiver), hence pre-
viously encountered features are no longer rewarding. The
second actor is active until it encounters a novel feature,
which instigates a more-than-expected reward. This is fol-
lowed by a transition to the retreat primitive, until the agent
reaches the base-state. At this point, a new entry begins,
with the same perceiver and the active actor is the sec-
ond actor (the one that was active prior to the retreat). It
alternates between exploration and retreat until it does not
encounter any rewarding or novel signals. At this point, it
advances to the next loop. When the last loop has encoun-
tered no rewarding signal, the agent is ready to seek a new
environment.

5 Implementation in the whisking system

We implemented the framework to model the rodents’
whisker system, which is used as an active sensing
modality to explore nearby surrounding (Szwed et al. 2003;
Kleinfeld et al. 2006). We first introduce the neurophysio-
logical basis, model assumptions and framework implemen-
tation. It is followed by simulation results and concluded
with relation of results to observed whisking behavior and
novel predictions.

5.1 Whisking system model

Neurophysiological basis Whiskers are actively controlled
by two muscle groups, namely, intrinsic muscles (Berg and
Kleinfeld 2003; Hill et al. 2008; Simony et al. 2010) and
extrinsic muscles (Berg and Kleinfeld 2003). The former
connect two adjacent whiskers of the same row (Simony
et al. 2010) and the latter are connected to the mystacial
pad (Berg and Kleinfeld 2003). It was reported that pro-
traction is mainly performed by the intrinsic muscles and
one of the external muscles, while retraction is either pas-
sive or affected by extrinsic muscles during palpation and
exploratory whisking, respectively (Hill et al. 2008; Berg
and Kleinfeld 2003).

The information from the whisker follicle is conveyed
via the infra-orbital nerve to the trigeminal ganglion
(TG)(Szwed et al. 2003; Szwed et al. 2006; Leiser and
Moxon 2007). There are three types of sensory neurons in

the TG, namely, whisking, touch and whisking-touch which
respond mainly during whisking, contact with objects or
both, respectively. The touch neurons in TG can be subdi-
vided to contact, pressure and detach cells, which respond to
the initial contact, the prolong pressure during contact and
the detachment from the object, respectively (Szwed et al.
2003).

Assumptions We model the whisker as a one-dimensional
agent characterized by the normalized azimuth angle θt =
0, 
θ, . . . , 1 (Knutsen et al. 2008), where θt = 0 and
θ = 1 denote full retraction and protraction, respectively.
The angle is discretized to Nθ = 1/
θ + 1 angles. In
each new excursion, the whisker field size is chosen
randomly, Nθ ∈ [7, 13], signifying a variable environment
and emphasizing the fact that the actors and critics are
invariant to whisker field size. Furthermore, the whisker is
treated as a rigid body, i.e. it cannot bend or “penetrate”
objects.

Dynamics The whisker dynamics is governed by the dis-
cretized change of the angle, driven by retraction and
protraction commands, at = {−1, 1}, respectively. In our
simplified model, the dynamics is linear and have the fol-
lowing form: θt+1 = θt+at
θ , where θt is always bounded
by 0 and 1.

Upon contact with an object, since the whisker is treated
as a rigid body, θt ≤ θo, where θo is the position of the
object in azimuth angle. Hence, even when protracting, the
whisker cannot “penetrate” the angle of the object, which
results in angle absorption (Szwed et al. 2003), i.e. the dif-
ference between the angle if there had not been an object and
the true angle. We model the touch information by a binary
variable, γt ∈ {0, 1} which equals one as long as there is
contact with an object, i.e. whenever protracting against the
object; zero otherwise.

State/action spaces In the implemented whisker model, the
sensory information is composed of whisker angle, θt , as
conveyed by whisking cells (Szwed et al. 2003; Szwed et al.
2006; Leiser and Moxon 2007), and contact information, γt ,
as conveyed by touch cells (Szwed et al. 2003). The actions
are modeled as either protraction or retraction, at .

Since the whisker angle is bounded and discretized, it is
considered as the variable part of the state-space, š = {θt }
and has a well defined metric. Thus, in order for the motor
primitives to be transferable, they cannot depend on θt . The
touch information, on the other hand, is binary, making it
the invariant part of the state-space. The critics and actors
can only depend on those.

We also consider the previous touch information, γt−1,
where initial touch information is taken to be zero, i.e.
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γ−1 = 0 meaning there is no contact with an object when
the whisker is fully retracted and starts moving. By inclu-
sion of the previous touch information, all three types of
touch cells (Szwed et al. 2003) can be represented, where
we introduce the notation of the sensory neurons, γN

t =
{C, P,D,W } for contact, pressure, detach and whisking
cells, respectively, Table 2

5.2 Whisker curiosity loop

Whisker perceiver The perceiver of the curiosity loop
attempts to predict the next sensory state of the agent. In the
case of the whisker dynamics, the state-space describes the
angle and contact information, st = {θt , γt }. The perceiver
is thus defined as L(θt+1, γt+1|θt , γt , at ), i.e. attempting
to predict the next activity of the whisking and touch
cells.

In many applications of Bayes updates (Miyazaki et al.
2006), there is a spatial (or other) relation between states,
such that the greater the “distance” between the observed
and true states, the smaller the probability q(o|k). Usually,
this acquires a Gaussian form: q(o|k) = Z−1 exp−||o−k||/σ 2

,
where Z is a normalization factor, || · || is the distance
between the states and σ is the width of the Gaussian, rep-
resenting the noise. This representation can be used only
for that part of the state space that has a geometric relation,
e.g. whisker angle or arena location. However, such a metric
cannot be a-priori assumed for all the state space, e.g. con-
tact information has no a-priori metric. Moreover, defining
a single metric for the entire state-space is problematic, at
best.

Hence, we do not assume any such metric, but rather
define a dichotomic relation that singles out the correct state
o = k and equates all the others. We then set, for a discrete
state-space:

q(o|k) =
{

1
1+σ

o = k
σ̂

1+σ
∀o �= k

(15)

where σ represents the noise, σ̂ = σ/(Ns − 1) is the nor-
malized noise and Ns is the number of discrete possible

Table 2 Representations of whisking and contact cell types

Cell type Notation γt−1 γt Comments

Whisking γ N
t = W 0 0 no contact at all

Contact γ N
t = C 0 1 no contact followed

by contact

Pressure γ N
t = P 1 1 maintained contact

Detach γ N
t = D 1 0 contact followed

by no contact

observed states. σ̂ conveys how much the observed sensory
information is unreliable: a very low σ̂ 	 1 means that
given an actual state k, it is highly likely that it will be
observed correctly o = k, while other states have very low
probability to be observed; if σ̂ = 1, all states have the same
probability to be observed, irrespective of the true state. In
this formulation there is no increased probability for “close”
states since there is no a-priori metric that maps them.

The perceiver Bayes update then acquires the simple
form:

Pt+1(s′|o) =
{
Pt(s′) 1

σ̂+Pt (o)(1−σ̂ )
s′ = o

Pt(s′) σ̂
σ̂+Pt (o)(1−σ̂ )

∀s′ �= o
(16)

In the whisking system model, at each time step
t , the agent updates its probability map L by using
its acquired current and previous time-step information,
namely, θt , θt−1, γt , γt−1 and at . The uncertainty of the
update is given by σ , Eq. (16). It determines what is the
probability that the true angle and contact are perceived
by the correct whisking and contact cells; a low σ means
that the correct cells have higher probability of being acti-
vated than incorrect cells (those that represent different
angles and contact information). It is important to note that
while the angle has a well-defined distance metric, con-
tact information does not. Thus, it is difficult to ascertain
a whole state-space distance, e.g. a distance between two
states ||s1 − s2||. For this reason, the noise function Eq. (15)
was used instead of a more common Gaussian-based noise
model.

Whisker critics and actors The invariant critics and actors
depend only on the extended invariant parts of the state-
space, s̃ = {γN

t }, i.e. they depend only on which cell is
active, the whisking or touch cells. The critics, V̂ π (γ N

t ; νt ),
predict the value given the current cell activation, but not the
value’s dependence on the current whisker angle (since it is
not invariant). The actor is also angle independent, wherein
the probability to protract or retract depends only on cell
activation identity, i.e. whisking/contact/detach/pressure.

We summarize the tunable parameters of the critic and
actor: the critic, V̂ π (γ N

t ; νt ) is represented by ||νt || = 4 val-
ues and the actor, π(at+1|γN

t ; λt) is represented by ||λt || =
4 protraction probabilities.

Furthermore, we are using relatively simple representa-
tions for the critic and actor: V (s; ν) = νs, π(a|s λ) =
λ2

s/
∑

k λ
2
k.

5.3 Whisker novelty management

We implemented a two-loop model, NH = 2, wherein
each loop contains a critic, V 1,2(s̃) and an actor, π1,2(a|s̃).
We assume that the first loop is insensitive to the contact
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information, γN
t = {C, P,D}, and only depends on

whisking cell activation γN
t = {W }, hence the critic has

a single value and the actor has only a single protrac-
tion/retraction probability. This assumption guarantees that
the first loop learns only whisker dynamics and not whisker-
object interaction (Gordon and Ahissar 2012). The second
loop depends on the entire invariant state-space, i.e. whisk-
ing and touch cell activation. In order to represent these
assumptions numerically, we have set that entries starting
with the first-level loop contain no objects in the whisker
field, whereas entries that start with the second loop may
have objects. In each new excursion there is a pobj chance
of objects being presented in a random position along the
whisker-field.

Retreat policy In the aforementioned simplified whisker
model, the base-state is set to be the fully protracted
whisker, i.e. šbase = {θ = 0}. Due to the binary nature of the
actions, i.e. either protraction or retraction, the retreat actor
also assumes a simple form, namely, it performs retraction
until reaching the base state.

Model parameters For the initial prior before the first run
of the algorithm P0, we take a uniform distribution for
the perceiver, i.e. there is equal probability for every angle
and contact information, irrespective of the current angle or
action performed.

5.4 Results

We start with a simple example run that illustrates the
complex dynamics of the hierarchical loops and novelty

management. It is followed by an analysis of the conver-
gence process, in which the motor primitives are learned.
We conclude with the description of the converged behavior
of the agent.

Example dynamics We present an excerpt of the full
dynamics, after more than 6000 time steps, beginning with
a new excursion. The whisker initially starts in the base
state of a fully retracted whisker, Fig. 4. The learner has
no information about the whisker dynamics, i.e. each new
action-state transition is novel. The initial actor is the first
level actor (Fig. 4a, gray), which has an increased protrac-
tion probability (not shown), i.e. given the current state, the
actor probabilistically determines the next action, here pro-
traction. The previous state, current action performed and
current state provide information for the perceiver, which
generates the Bayesian update, Eq. (16). Reward is then
calculated as the information gain of the update, Eq. (10)
(Fig. 4b, black), which is high whenever the agent encoun-
ters a new state-action transition. This reward affects two
processes: first, the reward is passed to the critic, which
compares the difference between its prediction of the reward
of the previous state and the current state to the difference
between the average reward and the received reward and
calculates the TD-error, Eq. (1). Based on the TD-error the
critic values and the actor probabilities of the current state
are updated, thus completing a single curiosity-loop cycle.

Once the loop receives a reward higher than the average
reward (Fig. 4b, dark/light gray), the novelty management
unit switches to the retreat actor (Fig. 4a, black), retracts the
whisker back to the base-state and the whisker begins a new
entry. The first loop’s actor continues until another novel

Fig. 4 An example run of
whisker dynamics. a Whisker
angle as a function of time, color
coded for active actors: first
loop actor coded as gray, second
loop actor coded as light gray,
retreat actor coded as black.
Touch cell activation are shown
in diamonds: black for contact,
gray for pressure and light gray
for detach cells. Vertical solid
lines indicate a new entry;
vertical dashed lines indicate a
new excursion. Horizontal lines
indicate position of object. ±T l

indicates the time of
increase/decrease in timescale of
loop l. b Reward rt (black) and
first (gray) and second (light
gray) level average rewards Ĵ l,2

t

as a function of time.
Parameters: σ = 0.5, pobj = 1.0
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action-state transition is reached, whereupon the retreat
primitive is activated, and so on.

The loop’s time-scale is updated after T l time-steps have
passed, whereupon it increases if the reward increased in
the last step or decreases otherwise, Eq. (14). Only after T 1

t

time-steps have passed without any novelty while the first
loop’s actor behaves, the novelty management unit switches
to the second level actor (Fig. 4a, light gray). When the sec-
ond actor is active, objects may be present in the whisker
field (Fig. 4a, horizontal lines). The first time the whisker
touches an object, the contact cells become active, which is a
novel event that causes full retraction back to the base-state
(Fig. 4(at), gray diamond). The retraction itself, although
occurring with the retreat actor, activates the detach cells
(Fig. 4(a), black diamond) and teaches the perceiver about
its presence. Contacting the same object again is slowly
becoming less novel, which ends the second-loop activation,
followed by a new excursion.

Loop convergence We now analyze the convergence of the
loops as a function of time, i.e. as the whisker makes more
and more entries, while exploring its own whisker dynam-
ics and its object-filled environment. Several parameters
change with interaction with the environment, the most
notable are those that affect the behavior, namely, the actor’s
protraction probabilities (Fig. 5a), loops’ timescales and
average reward (Fig. 5b). The actor’s probabilities converge
in a cascade of loops, i.e. the first loop’s free-air behavior
converges first to full protraction, followed by the second
loop’s behavior. The latter can be characterized by the fol-
lowing sequence: if there is no contact, protract; upon initial
contact, continue protraction instigating the activation of the
pressure cells; upon pressure, retract instigating the activa-
tion of the detach cells; upon detach either protract or retract

with half-half probability, completing the cycle of object
palpation.

The convergence of the loops’ timescale (Fig. 5b) shows
that both loops converge to the same value, which is the
span of the whole whisker field. The first loop’s timescale
determines the self-motion exploration, i.e. scanning the
protraction-retraction-angle correlation. The second loop’s
timescale determines the maximal position of objects, which
can appear within the entire whisker field. Furthermore,
the loops’ average reward also converge to a similar value,
indicating that the flow of novelty, measured by bits-per-
timestep, are similar across loops.

Exploration efficiency The efficiency of exploratory behav-
ior can be measured along two axis, namely, the time of
exploration and the perception of the explored environment
at the end of exploration. The efficiency of the converged
policies, in terms of time and accuracy of perception, is
compared to a random behavior (i.e., without prior learn-
ing in previous environments), both combined with the
novelty-management principle (Figs. 6). The results show
that converged loop 1 is slower than random action in per-
ceiving the whisker self-dynamics (Fig. 6a, left), but more
accurate (Fig. 6b, left). This is due to the fact that the
transition between exploration primitives is governed by
the heuristics that after T l time-steps with low novelty, a
higher loop is activated. Hence, in the random behavior
there is a greater chance of performing a “random walk”
in whisker-space that will generate low-novelty; in other
words the random-moving whisker does not explore the
entire whisker space before it perceives there is no more
novelty. On the other hand, the converged self-motion
exploration motor primitives covers the entire whisker-
space before moving to a higher level, thus taking it

Fig. 5 Convergence process,
averaged over 10 runs. a Mean
protraction probabilities for first
and second actors as a function
of time. First loop’s actor does
not depend on contact
information, hence is
represented by π1(W); second
loop’s actor protraction
probability π2(W/C/D/P )

depends on whisking, contact,
detach and pressure,
respectively. Shaded areas
represent standard error. b First
and second loops’ mean
timescales and average reward
as a function of time. Same
parameters as Fig. 4
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Fig. 6 Comparison of exploration efficiency between the converged
actors and random actors, both with novelty management. a Explo-
ration times of loops 1 and 2 for the converged and random actors
measured as the number of time-steps before releasing control to the
next loop. b Perceiver error at the end of exploration, measure as the
mean-square-error between the perceiver and the true whisker map.
Same parameters as Fig. 4

more time, but achieving a higher-accuracy perception of
self-motion.

Converged loop 2 perceives objects faster (Fig. 6a,
right) and more accurately than its random counterpart
(Fig. 6b, right). This occurs since the objects are local-
ized in whisker-space and random movements have low
probability of encountering and palpating their borders.
The object-localization motor primitive, on the other hand,
seeks out objects in the optimal manner by protracting until
touch, and then palpating the object borders in an opti-
mal manner, in the sense that perception of all touch-cell
activations is explored in the least amount of time. Hence,
the converged motor primitive is much more efficient than
randomly moving the whisker.

Whisking behavior We first describe the model’s explicit
results, shown in Fig. 7. While the figure represents a sin-
gle example, the convergent exploration motor primitives
were practically identical for 10 separate runs (Fig. 5a), and
for all parameters space (pobj ∈ (0, 1] and σ ∈ (0, 1), not
shown) hence exhibiting the same behavior as the one pre-
sented here. In the next section, we qualitatively compare
these behaviors to reported behaviors of rodents’ whisking
and suggest a novelty-driven explanation, Table 3.

To fully represent a natural scenario, the example in
Fig. 7 starts with unknown whisker dynamics and contin-
ues with an environment that may change after the end of
the excursion, i.e. a new object may appear in a random

position in the whisker field. The changed environment does
not instigate re-learning of the whisker dynamics via the
first loop, but rather the second (and last) loop continues to
be active and explore the reappearing objects.

In the beginning of the event (Fig. 7(B1)), the first motor
primitive is active, resulting in protraction. However, since
it has no information on the whisker dynamics, whenever it
encounters a new state-transition of the system, i.e. a new
whisker angle is reached, novelty rises and with it a large
reward. In this example, the sensory uncertainty is low such
that one encounter with the new state suffices to update
the learner in such a way that encountering the same state-
transition the second time does not instigate a large enough
reward. Hence, the recurrent activation of the first motor
primitive results in a gradual sequential exploration of the
whisker field. It ends when the entire whisker field has
been explored and one sweep produces decreasingly smaller
rewards. This results in a retreat and activation of the second
motor primitive.

In this example, initially there are no objects in the
whisker field (Fig. 7(B2)). Hence, the second motor prim-
itive protracts until it too sweeps the entire field, with no
encountered novelty. This results in the end of an excur-
sion and a retreat. However, as mentioned before, here
the whisker starts again with the second motor primitive
and does not re-learn the whisker dynamics with the first
motor primitive. While the free-air component of the two
primitives is identical, due to the already-acquired informa-
tion about the whisker dynamics, there is no larger-than-
expected novelty and hence no return with full retraction.
The whisker continues to explore, alternating between full
protraction and full retraction, until it encounters an object,
i.e. until the contact cells are activated.

When the whisker first encounters an object, there is a
rise in novelty and hence reward is greater than expected,
resulting in immediate retraction due to the retreat primitive
(Fig. 7(B3)). Subsequent contacts continue to explore the
object by the full activation of the second motor primitive
(Fig. 7(B4)): contact is followed by protraction, resulting in
pressure-cell activation; pressure is followed by retraction,
resulting in detach-cell activation; detach is followed by
either retraction, resulting in whisking-cell activation, or by
protraction, resulting in re-activation of the pressure cells;
whisking-cells induce protraction causing another palpation
cycle. This touch-induced behavior ends with full retraction
either when there is large novelty due to encountering a new
touch-cell activation, or if enough time has passed with no
higher-than-expected rewards. In the latter case, the whisker
starts a new entry with the second primitive, seeking a new
object.

If the whisker palpated an object that was then removed,
it considers the non-activation of the contact cell at the
object’s previous location as novelty, since it expected the
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Table 3 Whisking behaviors and their model counterparts

Behavior Model Principle Comments

B1. Whisker Alternation between Novelty-managed Immobility reduces

twitching loop 1and Retreat exploration of whisker environmental

(Semba et al. 1980; Nicolelis et al. 1995) dynamics variation

(Fanselow et al. 2001)

B2. Alternation between Novelty-poor Independent of

Exploratory loop 2 and Retreat contact-seeking sensory information

whisking entries

(Gao et al. 2001; Berg and Kleinfeld 2003)

(Towal and Hartmann 2008; Knutsen et al. 2008)

B3. Rapid Retreat retraction Novelty-aversive

cessation of upon initial contact of reaction to first

protraction touch-cell activation

(Mitchinson et al. 2007; Grant et al. 2009)

B4. Touch– Loop 2 exploration Novelty-seeking Less pumps during

induced pumps primitive exploration of touch– initial contacts,

(Deutsch et al. 2012) cell activations more pumps during

earlier whisking cycle

object to be there (Fig. 7(B5)). Hence, this novelty induces
a retreat activation resulting in a “phantom touch”-induced
behavior. The surprise lasts another sweep and the next time
it arrives to the same location, it no longer expects the object
there and continues to explore the whisker field.

5.5 Behavioral comparison

The initial behavior of incremental exploration of the
whisker field, intermittent with full retraction is reminiscent
of “whisker-twitching” (Semba et al. 1980; Nicolelis et al.

1995; Fanselow et al. 2001), which is described as high-
frequency small amplitude movement of the whisker during
attentive immobility, i.e. when the rat does not move its head
or torso but is awake. The model’s behavior is the result of
the first motor primitive activation which facilitates learning
the internal whisker dynamics. In relation to a freely mov-
ing animal, one may suggest that it is beneficial to do so
while not encountering objects in the environment, e.g. by
restricting the mobility of the torso and head.

The second behavior is exploratory whisking (Gao et al.
2001; Berg and Kleinfeld 2003; Towal and Hartmann 2008;

Fig. 7 Behavior of the entire converged model; whisker angle (θt ) is
depicted as a function of time, where color denotes the active actor
(same color code as Fig. 4). Black horizontal lines denote the angular
position of an object. B1, actor 1 protracts the whisker and the retreat
primitive retracts the whisker whenever a new angle is reached. B2,
initially there are no objects in the whisker field and it protracts, where-
upon experiencing no novelty, the novelty management unit switches
to the retreat policy (retraction). When objects are present, the initial

contact is novel and immediately followed by retreat (B3), whereas the
following contacts slowly exhibit the full dynamics of the converged
actor 2: protract upon contact (black diamond), retract upon pressure
(gray diamond) and either protract (t = 264) or retract (t = 337)
upon detach (light-gray diamond) mechanoreceptor activation (B4).
B5, when an object is removed from the whisker field, retreat follows
high novelty due to false prediction of its location. Inset: Zoom-in on
the initial contact with an object. Same parameters as Fig. 4
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Knutsen et al. 2008), wherein the second motor primitive
is active when there are no objects. The rhythmic whisking
behavior in the model is the result of intermittent protrac-
tion due to the second motor primitive when there are no
touch-cell activations and the retreat full retraction. The
frequency of this periodic behavior is mainly controlled
by the time-scale variable of the second loop, T2, with
increased frequency represented by a shorter time-scale.
However, it is important to note that in the model, periodic
exploratory whisking is a learned behavior, as exemplified
by the convergence of the second loop’s actor.

When an object is first encountered, the model suggests
that the first reaction is full retraction, due to the high
novelty of the whisker-object interaction. This behavior
was observed and dubbed “rapid cessation of protraction”
(Mitchinson et al. 2007; Grant et al. 2009) and occurred, as
in the model, only during the initial contact with the object.
While the full reported behavior also describes the contra-
lateral whisker increased protraction, our model currently
implements a single whisker and cannot account for this
result (see below).

During following contacts with the object, the model
shows that during the activation of the second motor prim-
itive, the object is palpated by discrete events of contact,
prolonged contact, detachment and another induced contact.
This behavior was also observed and called “touch-induced
pumps” (TIP) in Ref. (Deutsch et al. 2012), which also per-
formed a detailed analysis of the occurrence of the pumps.
The model predicts that TIPs should occur less during the
initial contacts with the object, due to the high novelty con-
tent of first contacts and the following novelty reduction via
the retreat primitive. The model further predicts that due to
the adaptive time-scale of the second curiosity loop, i.e. how
long with no novelty can a motor primitive be active before
retreating, objects encountered during latter stages of whisk-
ing should produce less TIPs. This happens, according to the
model, since arriving to a more distant object entails more
time with low novelty and only a few TIPs can occur before
the temporal threshold T (2) is reached. Mechanistically, the
model suggests that the retraction during a TIP, which hap-
pens due to the second-level motor primitive, is different
than that of exploratory whisking, which happens due to the
retreat primitive. For example, retraction speeds may be dif-
ferent. All of these predictions were observed and analyzed
in Ref. (Deutsch et al. 2012).

To conclude the behavioral section, although our whisker
model is a simplified version of a much richer whisker
dynamics (Hill et al. 2008; Simony et al. 2010), the emerged
patterns from the hierarchical curiosity loops architecture
qualitatively convey many reported behaviors. Nevertheless,
some known whisker motion patterns and details are not
reproduced by the current model, but may be reproduced by
simple extensions.

Predictions A behavior that emerges from the model is
that when objects are rapidly removed from the whisker
field, the whisker behaves as if the object was there, i.e.
it retracts upon “mis-contact” or “phantom-touch”. While
one may interpret it as “predictive whisking”, i.e. the rat
prepares for the object and thus whisks to that position,
our model interprets it differently. The novelty-management
principle results in novelty when after the whisker pal-
pated the object several times, thus confirming its position,
it is suddenly not there. The “mis-contact” produces nov-
elty, higher than expected reward, thus resulting in retreat
behavior. This interpretation can be verified by manipulat-
ing the time in which the object disappears: if it disappears
after the first contact, the probability for a phantom-touch
is much reduced, since according to the model, the rat still
has high uncertainty regarding the object position. How-
ever, the phantom-touch probability should increase with
increased number of palpations. Furthermore, introducing
perturbations that increase the whisker noise, or sensory
uncertainty, should also drastically affect the appearance of
phantom-touches.

The model describes the emergence of behavior and
thus promotes mainly developmental predictions, i.e. behav-
iors and their underlying neural circuitry during the critical
period of development in pups. One straightforward predic-
tion is that pups do not whisk periodically in free-air or
palpate novel objects immediately, i.e. once their whiskers
are grown enough to reach objects, the model predicts that
their first behavior should be quasi-random. This prediction
has been recently supported in (Grant et al. 2012).

Furthermore, the converged behaviors are strongly
dependent on the experience of the pup, thus changing
pups’ rearing should produce different emergent behaviors.
For example, partially paralyzing the mystacial pad mus-
cles during development, i.e. reducing their responsiveness
and contracting strength, should result in a different free-air
whisking when they are adults, even if at adulthood there
is no paralysis. Similarly, affecting the sensory input dur-
ing development, e.g. via pharmacological manipulations
along the sensory pathway, should result in markedly differ-
ent behaviors in adulthood. Moreover, preventing whisker-
object touch during development, e.g. by attaching plastic
cones to the snout, should result in the lack of palpation
behavior during adulthood. Another option is to place the
entire home-cage in a puff-ball material, such that the pups
never encounter a hard, inflexible objects. In such a man-
ner, the palpation behavior observed in normal rats should
be drastically changed.

Whisker model extensions The whisker model we have
implemented can be extended in several ways to account
for more diverse whisker dynamics. Currently, the model’s
discretization of the angle and control and the simplistic
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dynamics implemented are limited. Extending the model to
include more realistic dynamics (Hill et al. 2008; Simony
et al. 2010), in which motor neurons’ activation results in
whisker motion, requires higher-dimension actors and crit-
ics. This extension may reproduce a more exact temporal
dynamics of whisker movements, e.g. velocity profile, that
is analyzed in several studies (Towal and Hartmann 2008;
Grant et al. 2009).

The hierarchical curiosity loop architecture has focused
on a single whisker, whereas several studies have reported
multiple whisker dynamics (Towal and Hartmann 2006;
Grant et al. 2009). The model can be extended to include
multiple whiskers in a straightforward way by increasing the
dimensionality of the state- and action-spaces, e.g. θit , a

i
t ,

where i = 1, . . . , Nw, Nw is the number of whiskers. Fur-
thermore, the environment can be made richer and include
complex objects, such that the exploration perceiver will
eventually result in shape recognition. The emergent motor
primitives are hypothesized to include coordinated whisk-
ing and “look forward” behavior of the contra-lateral side of
touch (Grant et al. 2009).

6 Relation to previous models

The framework builds upon and extends the model pre-
sented in (Gordon and Ahissar 2012). The model introduced
the basic curiosity loop, which is an intrinsic reward actor-
critic framework. However, (Gordon and Ahissar 2012)
implemented artificial neural networks, whereas the cur-
rent implementation is based on the more rigorous Bayesian
framework. Furthermore, the intrinsic reward in (Gordon
and Ahissar 2012) was taken to be the prediction error of the
neural network, whereas we use here the information gain,
which is more robust to noise and has a much deeper theo-
retical foundation and can be actually measured (in bits).

In this contribution, we concentrated on one perceiver per
modality, which accommodates several curiosity loops, each

converging to exploration of different features of the same
perceived environment. In (Gordon and Ahissar 2012), on
the other hand, multiple perceivers were introduced, there
referred to as forward and inverse models, each accom-
modating a single curiosity loop. This difference results
in emergence of different exploration motor primitives as
shown in (Gordon and Ahissar 2012). Furthermore, the
proposed framework does not assume which features are
explored first and which later on in the hierarchy. The
sequence emerges from the interaction with the environ-
ment. In (Gordon and Ahissar 2012), on the other hand,
the structure of the perceivers higher in the hierarchy was
manually constructed.

Finally, both (Gordon and Ahissar 2012) and this contri-
bution implement the model on the whisker system. How-
ever, the framework presented here is based on more rigor-
ous mathematical foundations and introduces the notion of
novelty management. The repertoire of behaviors explained
by the framework is also more extensive and includes
whisker twitching, rapid cessation of protraction and
touch-induced pumps. Furthermore, novel behavioral and
neurophysiological predictions arise from the current frame-
work that were lacking in the (Gordon and Ahissar 2012)
model.

Furthermore, several previous models have addressed
similar issues and behaviors as those presented here. They
are summarized in Table 4, analyzed according to several
axis: Emergent vs. pre-programmed; convergent vs. ever-
changing behavior; novelty management; hierarchical archi-
tecture; external vs. intrinsic motivation and quantitative vs.
descriptive.

6.1 Emergent versus pre-programmed or random behavior

Exploratory behavior in specific scenarios can usually
be easily programed using a dedicated algorithm, e.g.
(Tchernichovski et al. 1998; Tchernichovski and Benjamini
1998; Harish and Golomb 2010). However, designing a

Table 4 Model comparison. Headers indicate: Emg. emergent; Cnv. convergent; Hrc. Cntl. hierarchical control; Mot. motivation; Qnt.
quantitative. In-table acronyms: Att./Rep. attraction/repulsion; App./Avoid. approach/avoidance

Model Emg. Cnv. Novelty Hrc. Cntl. Mot. Qnt.

Our framework V V Control V Int. V

(Tchernichovski et al. 1998; Tchernichovski and Benjamini 1998) Att./Rep. V

(Harish and Golomb 2010) V

(Oudeyer et al. 2007; Der and Martius 2012; Little and Sommer 2013) V Maximize Int. V

(Tishby and Polani 2011) V Maximize Int.+Ext. V

(Moldovan and Abbeel 2012) Reduce V

(Pape et al. 2012) V Maximize V Int. V

(Barto et al. 2004) V V V

(Elliot 2006) App./Avoid. V Int.
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single pre-programmed non-adaptive behavior to account
for the entire repertoire of behaviors is daunting. Further-
more, it is evident that animals do not behave in a random
manner, but rather perform goal-directed actions. The sce-
narios we address, however, do not have an inherent trivial
goal, such as reaching a target or solving a maze and animals
do not get an external reward for a specific behavior. We
consider scenarios in which they freely behave in a natural
intrinsically-motivated manner (Harlow 1950; Schmidhuber
1990; Oudeyer et al. 2007; Singh et al. 2010; Baldassarre
2011). Hence, the formal framework we propose is ubiq-
uitous and can be implemented in any scenario wherein
an animal encounters a novel environment, with no exter-
nal reward. The behavior itself is not defined by the formal
framework, but rather emerges from the interaction of the
animal with the environment, where the former attempts to
learn to predict this interaction.

The interaction between animal and environment is
incorporated via the curiosity loop, wherein the perceiver-
updates produce the information gain, translated to intrinsic
reward that drives the actor-critic algorithm. The actors are
thus learned and modified according to novelty, and not
according to a specific state or external rewards. We suggest
that these behaviors converge to specific motor primitives of
exploration, and are not continuously changing, opposed to
other suggested models (Der and Martius 2012). Hence, the
behavior as a whole converges to a specific, structured yet
complex behavior.

6.2 Convergent versus ever-changing policies

There are several relevant time scales that emphasize one
of the main differences between the proposed framework
and others (Oudeyer et al. 2007; Tishby and Polani 2011;
Der and Martius 2012; Pape et al. 2012; Little and Sommer
2013). Here the perceiver is updated during a perceptual
time scale, i.e. during exploration of a single environment.
In each new excursion, a new environment is introduced
hence signifying a new perceptual cycle. However, the
actor-critic module changes during a developmental time
scale which is much slower than the perceptual one. One
may even consider episodic learning, wherein each excur-
sion is a single episode that changes the actor-critic module.
Hence, the policies change little every excursion, but change
drastically along development in which many environments
are encountered. For this reason (as well as their local
nature) the policies in our framework converge with time to
fixed motor primitives.

In contrast, in most other architectures (Oudeyer et al.
2007; Tishby and Polani 2011; Der and Martius 2012; Pape
et al. 2012; Little and Sommer 2013) ((Der and Martius
2012) representing the other extreme), the “perceptual” and
“developmental” time-scales are identical, such that during

a single encounter with a novel environment, policies con-
tinuously change and never converge. They are always
seeking novel areas in state-action spaces. To accommodate
this ever-changing policy, in our framework we introduce
a pool of policies, namely, the hierarchical curiosity loops.
Thus, during exploration of a single environment, where
other models have a single ever-changing policy, we have
several converged exploration primitives.

6.3 Maximizing information gain versus novelty
management

There are several models of intrinsic motivation, or artifi-
cial curiosity, that attempt to maximize or minimize some
form of information gain or surprise (Schmidhuber 1990;
Polani 2009; Schmidhuber 2010; Friston 2010; Tishby and
Polani 2011; Der and Martius 2012; Little and Sommer
2013). However, there was no attempt to explain the rich
repertoire of observed and quantitatively analyzed behav-
iors in multiple scenarios. We believe that animals do not
in fact try to optimize information gain alone. As our
framework suggests, animals display a delicate interplay
between maximizing information gain and reducing nov-
elty. The former behavior can probably be explained by
alternative models, such as those discussed in Refs. (Polani
2009; Schmidhuber 2010; Friston 2010; Tishby and Polani
2011). Furthermore, the retreat behavior is an adaptive yet
pre-programmed behavior, very similar to moving down a
novelty gradient to a specific location. One novel aspect
of this contribution is the hypothesis that animals switch
between both via a novelty-management principle and that
some observed behaviors that were previously thought to be
of one source, can actually be explained by a combination
of novelty seeking and avoidance.

The rationale behind the novelty-aversive principle is the
observed tendency of animals to become agitated whenever
presented with too much novelty (Barnett 1958; Misslin and
Cigrang 1986; File 2001; Hughes 2007; Fonio et al. 2009)
and return to a known location. This tendency represents a
delicate trade-off between the curiosity drive, which seeks
novelty, and anxiety that stems from too much novelty.

Furthermore, the retreat primitive is closely related to
the concept of safety and ergodicity (Moldovan and Abbeel
2012), which states that a safe policy is one that guaran-
tees that all visited states can be reached. In contrast, a
non-ergodic and unsafe policy can venture into states that
do not allow a probable return to other previously visited
states, e.g. going down an unclimbable pit. In (Moldovan
and Abbeel 2012) a similar retreat policy is found and guar-
antees the safety of another sought-out policy, by constantly
checking that the developed policy can always return back.
In our context, the retreat motor primitive guarantees that
the agent will always be able to return to its base-state. One
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can thus suggest that animals try to maximize useful infor-
mation (Tishby and Polani 2011), where usefulness in this
context is their safety.

Moreover, in contrast to the approach-avoidance the-
ory (Elliot 2006), which can view the curiosity-driven
primitives as approach and the retreat primitive as avoid-
ance, our framework has a single objective, i.e. novelty
control. In other words, there are no two competitive goals,
whose balance brings about this description of the behav-
ior, but rather a single balancing adaptive goal with a single
variable, namely, novelty. We view this difference as an
advantage, since it can explain the same behavior with less
variables.

6.4 Single complex behavior versus hierarchical
architecture

There is a growing body of research that focuses on learn-
ing of motor primitives and acquisition of skills (Barto
et al. 2004; Pape et al. 2012). Furthermore, in the field of
reinforcement learning (RL) the appearance of hierarchical
reinforcement learning (HRL) (Barto and Mahadevan 2003;
Sutton et al. 2011) has instigated a new paradigm wherein
large and complex tasks can be automatically decomposed
to smaller tasks, each solved via an RL algorithm. In
our context, this would have surmounted to decomposing
the exploration task into smaller subtasks, each resulting
in an emergent behavior. A similar approach was taken
by Oudeyer, wherein the entire large state-action space
is slowly segmented to smaller regions, each represent-
ing a different context, wherein a different actor is learned
(Oudeyer et al. 2007).

We have chosen a different approach by deliberately
reducing the actor’s state space to those that can be eas-
ily transferable to other yet similar environments, similar
to the concept of agent-space options (Konidaris and Barto
2007). The transference can be made only within the same
modality and same “type” of environment, in contrast to
higher level skill transference. By restricting the actors to
be local and invariant, we created a situation in which
the exploration task cannot be solved by a single curios-
ity loop. We have introduced the hierarchical construction
of multiple curiosity loops, each starting where the previ-
ous finished, thus autonomously discovering features with
decreasing novelty content. Constant novelty is not main-
tained via a global optimizer that attempts to keep it constant
(Saig et al. 2012), but rather by a delicate balance between
the curiosity loops and the novelty-aversive retreat pol-
icy. In contrast to Oudeyer and similar approaches, the
separation to “contexts” is not done in the state-action
space, but rather in “novelty-space”, wherein each feature
with different novelty has its own optimized exploration
behavior.

Furthermore, the emergent behaviors can be view as
acquired skills of exploration (Barto et al. 2004; Pape et al.
2012). A single policy that attempts to explore the entire
space by adapting according to the novelty input will be con-
tinuously changing (Der and Martius 2012; Schmidhuber
2010; Ngo et al. 2012) and will never converge. Our model,
on the other hand, attempts to discover the motor primitives
of exploration, i.e. given that a specific type of environment
is encountered many times, but with different “parameters”,
what is the optimal policy to explore it? There should be a
single (or hierarchical construction of multiple) stationary
policies. In order to discover them, the curiosity loop with
information gain intrinsic reward is employed.

Furthermore, in contrast to (Gordon and Ahissar 2012) in
which each curiosity loop had its own perceiver, here there
is a single perceiver for all the curiosity loops. This differ-
ence is due to different motivations: in (Gordon and Ahissar
2012) we were interested in comparing actors that con-
verged due to different perceivers, e.g. forward and inverse
models, and the state-space itself changed with each hier-
archical level. In this contribution, we are interested in a
single perceiver that contains the entire exploration space;
however, the critics and actors are local and cannot be used
to learn the entire exploration space, thus requiring the hier-
archical construction, even with a single perceiver. The two
architectures are not mutually exclusive, namely, one can
have several hierarchical curiosity loop architectures, each
for a different perceiver, wherein the critics and actors are
local and invariant.

6.5 External versus internal goals

The formal framework presented here deals only with intrin-
sic motivation and reward. Hence, the behavioral scenarios
considered are limited to exploration of novel environ-
ments. However, animals (and robots) perform goal-directed
actions as well and the relation between the two must also be
considered (Tishby and Polani 2011). In our opinion, during
development, convergence of exploration motor primitives
serves as a major process by which motor primitives emerge
at large. Hence, when attempting to construct a complex
goal-directed motor strategy, the agent has as its disposal
a pool of motor primitives, from the exploration scenar-
ios. Thus, for example, one can hypothesize that known
motor primitives (Flash and Hochner 2005) are learned dur-
ing exploratory-guided behavior and not a goal-directed
one.

In a more general sense, during ontogenetic development,
one can consider many seemingly goal-directed behaviors,
usually thought of as those having an external reward,
as exploratory behaviors, generating intrinsic reward. For
example, reaching for a toy can be thought of as explo-
ration of hand-object interaction, hence exploratory, and not



J Comput Neurosci (2014) 37:259–280 277

necessarily a goal-directed behavior, as designed by many
experimenters. Thus, a motor primitive converged during
such behaviors comply with our definition of exploratory
motor primitives. During adult behavior, truly goal-
directed complex motions can be composed of these motor
primitives.

7 Discussion

We presented a single ubiquitous developmental formal
framework which learns exploratory behavior by repeated
interactions with the environment which results in the con-
vergence of motor primitives of exploration, each efficient
in learning a specific feature of the environment. The frame-
work is augmented with a mechanism that preserves a del-
icate balance between exploration and novelty-avoidance,
thus maintaining a constant level of novelty. The emergent
behavior exhibits exploration of increased complexity and
dimensionality, interspersed with frequent returns to a place
of low-novelty.

7.1 Neurophysiological and neuroanatomical
considerations

The framework architecture suggests a neuroanatomical
and neurophysiological mapping of the components onto
specific brain structures: The perceiver learns to predict
future sensory information based on the current motor-
sensory state. Two structures form the primary candidates
for this function: The cerebellum and the thalamocorti-
cal system. In the whisker system, the preferred candidate
for implementing the perceiver is the thalamocortical sys-
tem, which contains the updated information about the
on-going motor-sensory state (Guillery and Sherman 2012;
Yu et al. 2013) and is capable of predicting future states
(Ahissar 1998; Ahissar and Oram 2013). Candidate struc-
tures for the actors are motor nuclei, primarily the facial
nucleus, pre-motor brainstem nuclei and mid-brain sensori-
motor nuclei (Ahissar and Kleinfeld 2003; Kleinfeld et al.
2006; Diamond et al. 2008; Ahissar and Knutsen 2008).

The novelty management unit suggests a centralized
region that receives input of novelty and switches between
the novelty seeking and novelty aversive behaviors. How-
ever, an action selection mechanism can serve just as well,
as long as its reward input is intrinsic reward. Hence, the
basal ganglia is a good candidate for the location for nov-
elty management processing (Redgrave 2007). Furthermore,
the recent discovery of two complementary paths, one for
reward and one for punishment (Sesack and Grace 2009)
is a strong support for the framework, which distinguished
categorically between the two behaviors. This is in contrast
to a single behavior that tries to maintain a constant novelty,

which would not necessitate two separate mechanisms for
raising and lowering novelty.

Novelty aversive behavior is suggested to be tightly con-
nected to fear-related regions due to the hypothesis that it
relates to anxiety (Misslin and Cigrang 1986; Fonio et al.
2009). However, according to our formal framework it
should be tightly related to perceptual learning regions, e.g.
place cells in the hippocampus in an arena exploration sce-
nario, since they must be accessible when determining the
next action. In other words, novelty aversive behavior is
similar to goal-directed policy, whose goal is to return to
a known safe state. This requires already-learned informa-
tion about the environment and is to be contrasted to other
fear-related behavior such as freezing, which does not.

Considering the basic curiosity loop, the framework
predicts novel neural circuitry during development. In
order to facilitate rewarding information gain, there should
be a strong input connectivity to the rewarding system
from internal model areas, e.g. cerebellum (Shadmehr and
Krakauer 2008; Lalazar and Vaadia 2008) and sensory per-
ception areas, e.g. primary sensory cortices (Matyas et al.
2010; Feldmeyer et al. 2012; Bastos et al. 2012). The frame-
work predicts that this connectivity should be stronger dur-
ing development to allow convergence of the stereotypical
exploratory behaviors apparent in adult rats. Furthermore,
the conveyed information in these connections should code
prediction error signals (Shadmehr and Krakauer 2008;
Lalazar and Vaadia 2008).

Within each curiosity loop there are several internal vari-
ables that play critical roles in the framework. The first is
the average reward, which determines the novelty thresh-
old of that loop, i.e. novelty greater than it instigates retreat.
It was suggested that average reward is related to opportu-
nity costs and latency between action switching (Niv et al.
2007; Cools et al. 2011). Furthermore, it was suggested to be
related to tonic dopamine in nucleus accumbens. Similarly,
in our framework, the average reward serves as the reference
point which determines switching between different motor
primitives.

7.2 Development versus evolution

The formal framework we propose is based on ontogenetic
development via experience of the individual’s interaction
with the world and the resulting intrinsic reward it receives.
The end result is a behavioral policy composed of the inter-
play between the learned exploration primitives and the
retreat primitive. However, similar considerations could be
made regarding the phylogenetic development, where fit-
ness and reproduction rate substitute intrinsic rewards. In
other words, neural circuits of exploration primitives could
be developed by evolution and natural selection, if efficient
learning of the environment increases survival rate.
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One can further speculate that simpler yet efficient explo-
ration primitives, e.g. periodic whisking, would be “found”
by evolutionary mechanisms and coded in the experience-
independent neural circuitry development. This may explain
the existence of central-pattern-generators as part of the
exploratory behaviors; an evolutionary recruitment of a
“hard-wired” circuitry for efficient exploration (Deschenes
et al. 2012).

This phylogenetic argument does not contradict the pro-
posed model, but rather suggests a complementary, longer
time-scale adaptation mechanism to common environmen-
tal features. Thus, for example, experiments which alter
environments experienced by pups can help separate which
exploration primitives emerge via intrinsic reward and
which are innate. More specifically, it promotes the testable
prediction that whisking patterns predicted by the frame-
work can be changed via introduction of different rearing
environments.

7.3 Novelty-controlled robots

While robots do not experience fear (yet), their designers
and human companions do. Hence, integrating neopho-
bia into a robot may serve the purpose of keeping the
robot intact and its surrounding safe (Moldovan and Abbeel
2012). In this form, keeping novelty at a constant rate
restricts the robot and its handler of “taking chances” and
exploring the entire state-action space immediately. The
robot still acts according to the curiosity drive, but is bal-
anced by not trying too many new things at once. In an
environment with delicate features, such as human compan-
ions, this may be an important prerequisite. Novelty control
and exploration primitives can thus be another example of
the benefits of incorporating animal behavior into robots.

To conclude, we have presented a general framework
which puts forth the notion that novelty is managed by
exploring animals, rather than maximized or minimized.
The framework presents the emergence of exploration motor
primitives, which optimize exploration of specific features
of the perceived environment. The features also emerge in
a hierarchical manner due to the interaction with the envi-
ronment. Exploration behavior is shown to be the result of
an intricate interplay between exploration motor primitives
and retreat, thus balancing novelty input. We suggest plau-
sible neural substrates for each of framework components,
thus allowing several novel behavioral, neuroanatomical
and neurophysiological predictions.
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